Eng Ru
Отправить письмо

Применение полевого транзистора. Транзистор применение


MOSFET-транзистор. Применение MOSFET-транзисторов в электронике

Транзисторы MOSFET часто используются в производстве микросхем. Указанные элементы предназначены для управления напряжением цепи. Работают устройства по принципу изменения полярности. На сегодняшний день выпущено множество модификаций, которые отличаются по параметру выходного сопротивления, чувствительности и проводимости. По конструкции они являются схожими.

Модели с малой проводимостью состоят из двух ячеек. Проводники установлены в нижней части корпуса. Внутри элемента располагаются каналы с диодами. Область применения транзисторов очень обширная. Наиболее часто они встречаются в блоках питания.

mosfet транзистор

Транзисторы серии IRG4BC10K

Это обозначение транзисторов говорит о том, что они подходят для коммутаторов. Устанавливаются они на микросхемах с высокой проводимостью тока. Режимы работы транзистора можно регулировать за счет изменения частоты в цепи. В данном случае показатель предельной чувствительности равняется 5 мВ. Выходное напряжение подводники способны выдерживать в 12 В. Если рассматривать модификации с коннекторами, то там транзисторы подсоединяются через модулятор. Конденсаторы для улучшения проводимости используются только импульсного типа.

Для решения проблем с отрицательной полярностью необходимы варикапы. Также важно отметить, что указанные транзисторы подходят для видеосендеров. В данном случае элементы способны работать только с полевыми конденсаторами. В этом случае проводимость тока не будет превышать 10 мк. В блоках питания применение транзисторов ограничено моделями до 15 В.

как проверить mosfet транзистор

Параметры транзистора серии IRG4BC8K

Представленной серии MOSFET N-канальный транзистор пользуется большим спросом. В первую очередь важно отметить, что он относится к классу высокочастотных элементов. Параметр чувствительности у моделей равняется 6 мВ. Проводимость тока в среднем составляет 12 мк. Для коммутаторов модели подходят плохо. Также они быстро перегреваются в боках питания.

Работать устройства могут только с поглощающими фильтрами. Наиболее часто модификации встречаются в контроллерах и регуляторах. Микросхемы для них подбираются серии РР20. Если рассматривать стандартный контроллер с указанным транзистором, то конденсаторы используются проходного типа. Фильтры в данном случае берутся с обкладкой. Если рассматривать схему регулятора, то транзистор устанавливается за открытыми конденсаторами. Показатель проводимости должен составлять не более 15 мк. Максимальная допустимая перегрузка тока - 3 А.

применение транзисторов

Применение моделей IRG4BC17K

Это обозначение транзисторов говорит о том, что они применяются для коммутаторов и ресиверов. В данном случае проводимость тока колеблется в районе 5,5 мк. Чувствительность модификации зависит от типа выбранных конденсаторов. Если рассматривать схему стандартного ресивера, то они используются полевого типа. В этом случае чувствительность элемента колеблется в районе 16 мВ. Также важно отметить, что фильтры разрешается использовать только поглощающего типа.

Допустимый уровень перегрузки в такой ситуации не будет превышать 3,5 А. Выходное напряжение указанные транзисторы в ресиверах выдерживают в 14 В. Если рассматривать схему с коммутатором, то конденсаторы применяются импульсного типа. Всего для устройства потребуется два фильтра. Непосредственно транзистор устанавливается за обмоткой. Показатель проводимости тока обязан составлять не более 8 мк.

мощные транзисторы

Если рассматривать модификацию с оперативными конденсаторами, то вышеуказанный параметр не превысит 10 мк. Как проверить MOSFET-транзистор? Сделать это можно при помощи обычного тестера. Указанный прибор сразу покажет нарушение целостности проводников.

Особенности модели IRG4BC15K

Мощные транзисторы представленной серии подходят для микросхем РР20. Используются они в различных регуляторах для управления двигателями. Режимы работы транзистора легко регулировать благодаря изменению частоты в цепи. Если рассматривать схему обычной модели, то выходное напряжение на проводниках равняется 15 В. В среднем показатель проводимости тока составляет 4,5 мк.

Чувствительность элемента зависит от конденсаторов, а также адаптера. Еще важно учитывать показатель выходного сопротивления в цепи. Если рассматривать модификацию с сеточным адаптером, то чувствительность элемента равняется не более 20 мВ. Использовать триоды в цепи запрещается. Для того чтобы увеличить проводимость транзистора, используются выпрямители.

Если рассматривать регулятор на широкополосном адаптере, то показатель чувствительности составляет не более 15 мВ. Также важно отметить, что выходное напряжение колеблется в районе 10 В. В данном случае пороговое сопротивление составляет около 20 Ом. В силовых блоках применение транзисторов ограничено устройствами до 15 В.

mosfet n канальный транзистор

Область применения транзистора IRG4BC3K

Транзисторы представленной серии подходят для коммутаторов различной мощности. Также устройства активно используются в ресиверах. Пропускная способность модификаций колеблется в районе 7 мк. В данном случае чувствительность зависит от конденсаторов. Если рассматривать стандартный коммутатор, то они в нем используются однопереходного типа. В данном случае показатель чувствительности не превысит 3 мВ. Если рассматривать устройства с двухпереходными конденсаторами, то в этом случае вышеуказанный параметр может достигать 6 мВ.

Также важно отметить, что работать транзистор способен лишь с переходными адаптерами. В некоторых случаях для повышения стабильности напряжения устанавливаются изоляторы. Фильтры чаще всего используются проводникового типа. Если рассматривать схему ресивера с указанными транзисторами, то выходное напряжение не должно превышать 12 В. В данном случае конденсаторы целесообразнее подбирать операционного типа. В среднем чувствительность будет составлять 12 мВ.

Установка транзистора в электропривод

MOSFET-транзистор в электроприводы небольшой мощности разрешается устанавливать через переходники. В данном случае конденсаторы используются с фильтрами. Преобразователь для нормальной работы системы подбирается без выпрямителя. В некоторых случаях устанавливается динистор.

Если рассматривать привод на 10 кВт, то транзистор должен находиться с кенотроном. Показатель выходного напряжения максимум будет достигать 15 В. Однако следует также учитывать сопротивление в цепи. В среднем указанный параметр не превышает 50 Ом.

режимы работы транзистора

Транзистор в блоке питания на 5 В

В блоках питания на 5 В MOSFET-транзистор разрешается устанавливать без фильтров. Непосредственно адаптеры подбираются контрольного типа. У некоторых модификаций используется демпфер. В таком случае параметр проводимости не превысит 5,5 мк. Чувствительность, в свою очередь, зависит от типа конденсаторов. У блоков на 5 В они часто используются интегрального типа. Также существуют модификации с импульсными элементами. Чем заменить транзистор в блоке питания на 5 В? При необходимости это всегда можно сделать, установив расширитель.

Транзисторы у блоков на 10 В

В блоки питания на 10 В MOSFET-транзистор устанавливается с поглощающими фильтрами. Конденсаторы чаще всего используются импульсного типа. Параметр выходного сопротивления в цепи не должен превышать 50 Ом. Также важно отметить, что открытые адаптеры использовать запрещается. В данном случае их можно заменить компаратором. Показатель отрицательного сопротивления при этом не превысит 40 Ом.

обозначение транзисторов

Устройства в блоке на 15 В

В блок питания на 15 В MOSFET-транзистор разрешается устанавливать с высокой пропускной способностью. Если рассматривать модификации без усилителей, то они подбираются с переходником. Конденсаторы для цепи многие эксперты рекомендуют брать дуплексного типа. В этом случае чувствительность элемента составит 35 мВ. В свою очередь, показатель перегрузки будет не более 2,5 А.

Для того чтобы увеличить проводимость тока, используются импульсные конденсаторы. Однако важно отметить, что они потребляют много электроэнергии. Также конденсаторы импульсного типа оказывают дополнительную нагрузку на преобразователь. Чтобы решить представленную проблему, рядом с транзистором устанавливается триод. Целесообразнее использовать триод сеточного типа. Также на рынке представлены модификации с инвертором.

Транзисторы в регуляторах освещения

В регуляторах освещения часто используются транзисторы с низкой чувствительностью. Все это необходимо для того, чтобы решить проблемы с резкими перепадами температуры. В данном случае показатель отрицательного сопротивления не должен превышать 50 Ом. Конденсаторы для систем подбираются двоичного типа. Многие эксперты не советуют использовать дуплексные адаптеры.

fb.ru

Применение полевого транзистора

Применение полевого транзистора

Полевые транзисторы используют как аналоговые выключатели. Применение их как выключателей в аналоговых схемах является прямым следствием их способа работы. Это обусловлено тем обстоятельством, что когда напряжение на затворе-источнике, VGS равно нулю, n-канал транзистора будет работать в области насыщения и будет действовать почти как небольшая схема.

Таким образом, напряжение на выходе будет равно нулю (Рисунок 1). С другой стороны, если отрицательное напряжение находится между выводами затвора и источника i.e., если VGS отрицательно, то транзистор работает в области выключения или в области отсечки.

Это означает, что в данном случае полевой транзистор действует как открытая схема и ток стока, ID будет равен нулю. Вследствие этого, напряжение через загрузочное сопротивление RD будет равно нулю, что порождает то обстоятельство, что VDD похоже на V0.

Применение полевого транзистора

Рисунок 1 Полевой транзистор как аналоговый выключатель

Это свойство вести себя как выключатель может быть использовано для проектирования аналогового мультиплексора, как показано на рисунке 2.

Применение полевого транзистора

Рисунок 2 n-к-1 Мультиплексор, использующий полевые транзисторы.

Тут каждый из сигналов на входе (сигнал 1, сигнал 2, … сигнал n) проходит через выделенный полевой транзистор с управляющим p-n-переходом (T1, T2, … Tn) перед контактом с выводом выхода, V0. Тут лишь один сигнал среди множества сигналов на входе возникает на выводе выхода, в зависимости от напряжения VGS на выводах затвора.

К примеру, если VGS2 отрицательное, в то время как все остальные VGS равны нулю, то сигнал на выходе будет Сигналом 2. Более того, способность к выключению у биполярных транзисторов с изолированным затвором используется в двигателе внутреннего сгорания, а именно в обмотках, ответственных за возгорание, которые требуют быстрого выключения и возможностей блокировки напряжения.

Усилители

Переход в полевых транзисторах используется на стадии усиления. Он изолирует предыдущую стадию от следующей стадии и, таким образом, действует как буферные усилители (Рисунок 3). Это обусловлено тем, что такие транзисторы имеют очень высокое полное сопротивление на входе, в силу чего предыдущая стадия будет слегка загружена, вызывая полный выход Стадии 1, возникая на входе буфера.

Можно сделать так, что весь выход буфера будет возникать на входе в Стадии 2, используя данные транзисторы в конфигурации общего стока, благодаря низкому полному сопротивлению на выходе. Это даже значит, что буферные усилители способны к управлению большими нагрузками или сопротивлениями с небольшой нагрузкой.

Применение полевого транзистора

Рисунок 3 Полевой транзистор как буферный усилитель

Полевые транзисторы являются устройствами, которые издают мало шума, по крайней мере, если сравнивать их с биполярными плоскостными транзисторами. Это делает их полезными компонентами для использования в качестве усилителя на приёмниках с внешним интерфейсом, ведь они нуждаются в минимальном уровне шума на выходе в итоге.

Стоит также отметить, что полевые транзисторы являются устройствами с контролируемым напряжением, что делает их идеальными для использования в качестве усилителей для радио частот. Причина этого в том, что за исключением усилителя для радио частот откликаются достаточно хорошо, даже когда антенны в конце приёмника принимают недельные сигналы (сигналы с очень низким током).

Полевой транзистор как усилитель в конфигурации общего источника может быть использован для управления другим полевым транзистором (усилителем) в конфигурации общего затвора, формируя каскадный усилитель, как показано на рисунке 4.

Хотя коэффициент усиления каскадного усилителя такой же, как и у усилителя в конфигурации с общим источником, его ёмкостное сопротивление на входе весьма низкое, если сравнивать с ним же у усилителя в конфигурации с общим источником. Более того, каскадный усилитель даёт очень высокое сопротивление на входе.

Применение полевого транзистора

Генератор с фазовращателем

Полевой транзистор даёт высокое полное сопротивление на своих выводах входа, которое уменьшает эффект нагрузки. Также они могут использоваться как для усиления, так и для функций обратной связи. Эта особенность полевых транзисторов делает их подходящими для использования в схемах генераторов с фазовращателем, как показано на рисунке 5.

Применение полевого транзистора

Рисунок 5 Полевой транзистор как генератор с фазовращателем

Модулятор

Полевой транзистор, действующий как выключатель, может быть использован как модулятор (Рисунок 6), где напряжение постоянного тока, VDS преобразуется в напряжение переменного тока с таким же уровнем амплитуды, VAC. Это вытекает из того, что квадратная форма волны напряжения используется как VGS, в результате чего транзистор действует в области выключения и в области насыщения, попеременно. Такие схемы модулятора помогают преодолеть проблему смещения, которая существует в случае усилителей с непосредственной связью.

Применение полевого транзистора

Рисунок 6 Полевой транзистор как модулятор

Ограничитель тока

N-канальный полевой транзистор, чей терминал затвора укорочен вместе с выводом источника, действует как ограничитель тока. Это означает, что в этом размещении, полевой транзистор даёт току проходить через них, чтобы достигнуть только определённого уровня, после чего, он становится удерживаемой постоянной, безотносительной к колебаниям уровня напряжения. Эти ограничители тока из интегральной части не изменяющегося постоянного тока или стабилизирующих диодов.

Применение полевого транзистора

Рисунок 6 Полевой транзистор как ограничитель тока

Полевые транзисторы широко используются в интегрированных схемах из-за их компактного размера. Они используются в схемах микшеров для телевизоров и радиоприемников из-за низких модуляционных искажений. Более того, полевые транзисторы также применяют в резисторах с переменным напряжением в операционных усилителях, схемах контроля звука, ведь они обеспечивают большую изоляцию между их выводами затвора и стока. Полевые транзисторы применяются в таких областях как цифровая электроника и оптоволоконные системы.

Пора подвести итоги: полевой транзистор может использоваться как аналоговый выключатель, как усилитель, как генератор с фазовращателем, как модулятор и как ограничитель тока. Каждый вариант имеет свои особенности, делающие его действительно значимым.

Вряд ли можно переоценить роль полевого транзистора в повседневной жизни. Все перечисленные пять способов его применения имеют очень существенное значение в наши дни. Сложно выделить какое-то наиболее значимое использование среди названных, ведь каждое может оказаться где-то просто незаменимым.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

 

elektronchic.ru

Транзистор Википедия

Дискретные транзисторы в различном конструктивном оформлении

Транзи́стор (англ. transistor), полупроводнико́вый трио́д — радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами[1], способный от небольшого входного сигнала управлять значительным током в выходной цепи, что позволяет его использовать для усиления, генерирования, коммутации и преобразования электрических сигналов. В настоящее время транзистор является основой схемотехники подавляющего большинства электронных устройств и интегральных микросхем.

Транзисторами также называются дискретные электронные приборы, которые, выполняя функцию одиночного транзистора, имеют в своем составе много элементов, конструктивно являясь интегральной схемой, например составной транзистор или многие транзисторы большой мощности[2].

Транзисторы по структуре, принципу действия и параметрам делятся на два класса — биполярные и полевые (униполярные). В биполярном транзисторе используются полупроводники с обоими типами проводимости, он работает за счет взаимодействия двух, близко расположенных на кристалле, p-n переходов и управляется изменением тока через база-эмиттерный переход, при этом вывод эмиттера всегда является общим для управляющего и выходного токов. В полевом транзисторе используется полупроводник только одного типа проводимости, расположенный в виде тонкого канала, на который воздействует электрическое поле изолированного от канала затвора[3], управление осуществляется изменением напряжения между затвором и истоком. Полевой транзистор, в отличие от биполярного, управляется напряжением, а не током. В настоящее время в аналоговой технике доминируют биполярные транзисторы (БТ) (международный термин — BJT, bipolar junction transistor). В цифровой технике, в составе микросхем (логика, память, процессоры, компьютеры, цифровая связь и т. п.), напротив, биполярные транзисторы почти полностью вытеснены полевыми. В 1990-е годы был разработан новый тип гибридных биполярно-полевых транзисторов — IGBT которые сейчас широко применяются в силовой электронике.

В 1956 году за изобретение биполярного транзистора Уильям Шокли, Джон Бардин и Уолтер Браттейн получили Нобелевскую премию по физике.

К 1980-м годам транзисторы, благодаря своей миниатюрности, экономичности, устойчивости к механическим воздействиям и невысокой стоимости практически полностью вытеснили электронные лампы из малосигнальной электроники. Благодаря своей способности работать при низких напряжениях и значительных токах, транзисторы позволили уменьшить потребность в электромагнитных реле и механических переключателях в оборудовании, а благодаря способности к миниатюризации и интеграции позволили создать интегральные схемы, заложив основы микроэлектроники. С 1990-х в связи с появлением новых мощных транзисторов, стали активно вытесняться электронными устройствами трансформаторы, электромеханические и тиристорные ключи в силовой электротехнике, начал активно развиваться Частотно-регулируемый привод и инверторные преобразователи напряжения.

На принципиальных схемах транзистор обычно обозначается «VT» или «Q» с добавленим позиционного индекса, например, VT12. До 1970-х гг. в русскоязычной литературе и документации также применялись обозначения «Т», «ПП» (полупроводниковый прибор) или «ПТ» (полупроводниковый триод).

ru-wiki.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта