Eng Ru
Отправить письмо

Заземление и зануление электроустановок: функции, специфика, устройство. Требования к заземлению


Главные документы с требованиями к заземлению

Организация защитного заземления на стороне потребителя относится к обязательным процедурам, регламентируемым действующими нормативными актами и государственными стандартами (ГОСТ). Основные документы, определяющие порядок производимых при этом работ и содержащие основные требования к заземлению – это Правила устройства электроустановок (ПУЭ) и ПТЭЭП. Соответствующими положениями этих правил также оговариваются условия организации и проведения ТО заземляющих систем (включая их электрические испытания).

Требования к заземляющим устройствам (ЗУ)

Согласно требованиям нормативов любые действующие электроустановки должны защищаться специальным заземляющим контуром (ЗК), в состав которого входит такая обязательная составляющая, как заземлитель. Последний представляет собой сборную конструкцию из металлических элементов, обеспечивающих надёжный контакт с землёй и способствующих растеканию тока в неё.

Это сооружение (часть заземления), как правило, изготавливается из отдельных токопроводящих элементов (металлических прутьев, трубных заготовок или стандартных профилей), погружаемых в грунт на определённую глубину. Правилами обустройства таких конструкций предполагается, что для их изготовления могут применяться только сталь или медь, но никак не алюминий или другие металлы.

Этими же правилами оговариваются и возможные варианты конструкций заземлителя, а также устанавливается соответствие их показателям, нормируемым по ПУЭ.

Сопротивление

Одним из основных показателей эффективности работы заземления является электрическое сопротивление всей системы в целом, которое согласно пункту 7.1.101 ПУЭ (издание седьмое от 2016 года) не должно превышать следующих значений:

  • для трансформаторных подстанций 6-35 киловольт и питающих генераторов – не более чем 4 Ома;
  • для жилых объектов с питающими напряжениями 220 или 380 Вольт – не более 30-ти Ом.

Сопротивление заземления может регулироваться специальными методами, предполагающими выполнение следующих операций:

  • увеличение эффективной площади соприкосновения металлоконструкции с почвой за счёт включения в её состав требуемого количества дополнительных элементов;
  • повышение удельной проводимости в зоне размещения контура заземления путём добавления в грунт растворённых в воде соляных составов;
  • сокращение длины участков трасс, по которым заземляющие проводники прокладываются от защищаемого оборудования и распределительного шкафа с ГЗШ в сторону ЗУ.

Помимо этого защитные свойства системы заземления зависят и от характеристик грунта в месте обустройства заземлителя.

Свойства грунта

Ещё одним показателем эффективности работы заземления является величина тока стекания в грунт, которая также закладывается в нормативные ограничения, оговариваемые соответствующими пунктами ПУЭ. Значения этого параметра определяются составом почвы в месте расположения заземлителя, а также зависят от её влажности и температуры.

Практически установлено, что оптимальные условия, обеспечивающие эффективное распределение токов стекания и позволяющие упростить размещаемую в земле конструкцию заземления, создаются в особых грунтах. Это почвы, содержащие глину, суглинок или торфяные составляющие. При наличии указанных компонентов и высокой влажности почвы условия для растекания тока в месте обустройства заземлителя считаются идеальными.

Заземляющие системы (ЗС)

Согласно основным положениям ПУЭ, заземление электроустановок и рабочего оборудования может быть организовано несколькими способами, зависящими от схемы включения нейтрали на трансформаторной подстанции. По этому признаку различают несколько видов систем заземления, обозначаемых в соответствии с общепринятыми правилами. В основу их классификации заложено сочетание латинских значков «T» и «N», что означает заземлённую на подстанции нейтраль трансформатора.

Добавляемые к этому обозначению буквы «S» и «C» являются сокращениями от английских слов «common» – общая прокладка и «select» – раздельная. Они указывают на способ организации заземляющего проводника на всём протяжении питающей линии от подстанции до потребителя (в первом случае – совмещённый PEN, а во втором – раздельные PE и N). Объединённое через дефис «C-S» означает, что на некоторой части трассы заземляющий проводник совмещён с рабочим «нулём», а на оставшемся её участке они прокладываются раздельно.

Для мобильного оборудования

Существуют и другие системы организации защитного заземления оборудования (TT и IT, например), использующие нейтральный проводник в качестве «нулевого» и предполагающие обустройство повторного ЗУ на стороне потребителя. В первом случае нейтраль на подстанции глухо заземлена, а во втором – вообще никуда не подсоединяется. Эти варианты включения нейтрали используются редко и лишь в тех случаях, когда требуется сделать повторное заземление мобильных электроустановок (при условии что на стороне генератора сделать это очень сложно).

Согласно ГОСТ 16556-81 для передвижного электрооборудования используется рассмотренная выше система IT, при реализации которой на стороне потребителя организуется повторное заземление. Этим стандартом оговариваются технические характеристики и параметры ЗУ, которое временно устраивается в зоне предстоящих работ.

Знаковая и цветовая маркировка элементов ЗС

В соответствии с требованиями ГОСТа Р 50462 проводники и шины электросетей с заземленной нейтралью должны обозначаться маркировкой «РЕ» с добавлением штриховой линии из перемежающихся жёлтых и зелёных полосок на концевых участках трассы. Одновременно с этим шины рабочего «нуля» обозначаются голубым цветом и маркируются как «N».

В тех схемах, где нулевые рабочие проводники используются в качестве элемента защитного заземления с подключением на заземляющее устройство, при их обозначении используется голубой цвет. Одновременно с этим им присваивается маркировка «PEN» и добавляются чередующиеся желтые и зеленые штрихи на конечных участках схемных обозначений.

Необходимо отметить, что строгое соблюдение всех положений и требований ГОСТа и ПУЭ позволит потребителю организовать безопасную эксплуатацию имеющегося в его распоряжении оборудования.

evosnab.ru

Защитное заземление. Требования предъявляемые к защитному заземлению

ОХРАНА ТРУДА

 

Общие понятия

 

На рабочем месте должны быть предусмотрены меры защиты от возможного влияния опасных и вредных факторов производства. Уровни этих факторов не должны превышать предельных значений, обсужденных правовыми, техническими и санитарно-техническими нормами. Настоящие нормативные документы обязывают к созданию на рабочем месте условий труда, при которых влияние опасных и вредных факторов на работающим или устранено совсем, или находится в допустимых пределах.

Электрические установки, с которыми приходится иметь де­ло практически всем работающим на железнодорожном транс­порте, представляют для человека большую потенциальную опасность. Эта опасность усугубляется тем, что органы чувств человека не могут на расстоянии обнаруживать наличие элек­трического напряжения на оборудовании.

При работах на линиях и устройствах авто­матики и связи возможны случаи поражения персонала электричес­ким током. Поражение может возникнуть при прикосновении к токоведущим проводам, зажимам трансформаторов, реле и другим приборам, а также при переходе напряжения на нормально нетоковедущие металлические части электроустановок в результате нарушения изоляции. Причинами нарушения изоляции могут быть дей­ствие высоких напряжений, возникающих при грозовых разрядах и коротких замыканиях, а также механические повреждения устройств.

Для обеспечения электробезопасности обслуживающего персо­нала корпуса кабельных ящиков, релейных шкафов, линейных трансформаторов и других приборов заземляют.

Электробезопасность на производстве обеспечивается соот­ветствующей конструкцией электроустановок, применением тех­нических и организационных мероприятий и средств защиты. Их выбор зависит от вида электроустановки, номинального напря­жения и режима нейтрали источника тока, условий, в которых работает электрооборудование, его доступности и других фак­торов.

К основным техническим мероприятиям и средствам защиты от поражения электрическим током при прикосновении к токоведущим частям электроустановок относятся использование элект­рооборудования соответствующего исполнения, а также исполь­зование малых напряжений, применение соответствующих изоляции, ограждения, блокировки, сигнализации, изолирующих электрозащитных средств.

 

 

Защитное заземление. Требования предъявляемые к защитному заземлению

 

Защитой от напряжений, появившихся на нетоковедущих ча­стях электроустановок (например, металлических корпусах) в результате нарушения изоляции, служат защитное заземление, зануление и защитное отключение.

Защитному заземлению или занулению подлежат металли­ческие части электроустановок, доступные для прикосновения человека и не имеющие других видов электрозащиты. Заземле­ние или зануление выполняют во всех случаях при номинальном переменном напряжении 380 В и выше и номинальном постоян­ном напряжении 440 В и выше, а также в помещениях с повы­шенной опасностью и особо опасных, в наружных установках при номинальном переменном напряжении от 42 до 380 В и по­стоянном — от 10 до 440 В.

Защитным заземлениемназывают преднамеренное электри­ческое соединение металлических нетоковедущих частей элект­роустановки, которые могут оказаться под напряжением, с за­земляющим устройством.

Заземляющее устройство состоит из заземлителя и заземля­ющих проводников. Заземлителем является металлический про­водник (электрод) или группа соединенных между собой провод­ников (электродов), находящихся в непосредственном соприкос­новении с землей. Заземляющим проводником называют метал­лический проводник, который соединяет заземляемые части электроустановки с заземлителем.

Защитное заземление применяют в трехфазных сетях напря­жением до 1000 В с изолированной нейтралью и сетях напряже­нием выше 1000 В как с изолированной, так и заземленной ней­тралью.

В сетях напряжением до 1000 В защитное заземление при замыкании фазы уменьшает переходящее на корпус электроуста­новки напряжение относительно земли до безопасного значения. При этом уменьшается и ток, протекающий через тело человека. Сопротивление заземляющего устройства в таких случаях не должно быть больше нормированной величины. Эта величина зависит от напряжения электроустановки, мощности источника питания и является основным показателем, характеризующим пригодность защитного заземления для данных условий.

Согласно ПУЭ и ГОСТ 12.1.030—81 «ССБТ. Электробезопас­ность. Защитное заземление. Зануление» в электроустановках переменного тока напряжением до 1000 В в сети с изолированной нейтралью сопротивление заземляющего устройства не должно превышать 4 Ом. Если мощность источника питания (трансфор­матора, генератора) не превышает 100 кВА, то сопротивление заземляющего устройства может достигать 10 Ом, но не более.

Сопротивление заземления измеряют не реже одного раза в год в периоды наименьшей проводимости: раз летом при наи­большем просыхании почвы, раз зимой при наибольшем промер­зании почвы. Контроль сопротивления проводят при помощи из­мерителей защитного заземления .

Все подлежащие заземлению объекты присоединяют к зазем­ляющей магистрали отдельным проводником. Нельзя последова­тельно соединять заземляющие проводники от нескольких еди­ниц силового оборудования. Объясняется это тем, что в случае нарушения целостности соединения незаземленными могут ока­заться сразу несколько корпусов электроустановок.

Заземляющие проводники крепят к магистрали только свар­кой, а к корпусам электрооборудования — сваркой или болтовы­ми соединениями .

На железнодорожном транспорте заземлению подлежат элек­троустановки в локомотивных и вагонных депо, на железнодо­рожных станциях, заводах, в хозяйствах электроснабжения, СЦБ и связи и т. д. Объектами заземления являются станины и кожу­ха электрических машин, трансформаторов, выключателей, при­водов электрических аппаратов, вторичные обмотки трансформа­торов при первичном напряжении 380 В и выше, каркасы рас­пределительных щитов и щитов управления, металлические кор­пуса кабельных муфт, металлические оболочки кабелей и прово­дов, стальные трубы электропроводки, металлические огражде­ния частей, находящихся под напряжением, металлические фер­мы, балки и другие конструкции, которые могут оказаться под напряжением и др.

К заземляющим устройствам относят следующие требования:

· Заземляющие устройства электроустановок потребителей должны соответствовать требованиям действующих ПУЭ.

· Заземляющие устройства должны обеспечивать безопас­ность людей и защиту электроустановок, а также эксплуатационные ре­жимы работы.

Для той части электрооборудования, которая может оказаться под напряжением вследствие нарушения изоляции, должен быть обеспечен надежный контакт с заземляющим устройством либо с заземленными конструкциями, на которых оно установлено.

· При сдаче в эксплуатацию заземляющих устройств электро­установок монтажная организация передает эксплуатирующей органи­зации техническую документацию, а также протоколы приемосдаточных испытаний .

· Присоединение заземляющих проводников к заземлителям, заземляющему контуру и к заземляемым конструкциям должно выпол­няться сваркой, а к корпусам аппаратов, машин и опорам воздушных линий электропередачи — сваркой или надежным болтовым соединением и удовлетворять требованиям ГОСТ.

· Открыто проложенные заземляющие проводники должны иметь отличительную окраску в соответствии с требованиями ГОСТ.

· Использование земли в качестве фазного или нулевого про вода в электроустановках напряжением до 1000 В запрещается.

· Для определения технического состояния заземляющего устройства периодически производятся:

а) внешний осмотр видимой части заземляющего устройства;

б) осмотр с проверкой цепи между заземлителем и заземляемыми элементами (отсутствие обрывов и неудовлетворительных контактов в проводке, соединяющей аппарат с заземляющим устройством), а также проверка пробивных предохранителей трансформаторов;

в) измерение сопротивления заземляющего устройства;

г) проверка цепи фаза—нуль;

д) проверка надежности соединений естественных заземлителей;

е) выборочное вскрытие грунта для осмотра элементов заземляю­-

щего устройства, находящихся в земле;

· Внешний осмотр заземляющего устройства производится

вместе с осмотром электрооборудования РУ, трансформаторных под­станций и распределительных пунктов, а также цеховых и других элек­троустановок.

Об осмотрах, обнаруженных неисправностях и принятых мерах должны быть сделаны соответствующие записи в журнале осмотра за­земляющих устройств или оперативном журнале.

· Значения сопротивлений заземляющих устройств должны поддерживаться на уровне, определенном требованиями ПУЭ, с целью обеспечить напряжения прикосновения в соответствии с действующими нормами.

· На каждое находящееся в эксплуатации заземляющее устройство должен иметься паспорт, содержащий схему заземления, основные технические данные, данные о результатах проверки состояния

заземляющего устройства, о характере ремонтов и изменениях, вне- сенных в данное устройство.

 

 

Схема заземления поста ЭЦ

 
 

Схема заземления поста ЭЦ представлена на рисунке 5.1

 

 

Рис 5.1 Схема заземления поста ЭЦ

 

megalektsii.ru

Защитное заземление: особенности, требования, проведение

Защитное заземление – обнуление потенциала проводящих частей электроустановки, не находящихся в условиях исправного оборудования под током непосредственно. К таковым частям относят металлический корпус. Защитным заземление называют по причине, что нулевой проводник непосредственно для работы установки не требуется, играет роль в случае поломки, аварии. В отличие от рабочего, обеспечивающего правильное функционирование электрооборудования.

Основные термины и общие понятия

Заземление редко выполняется для бытовых цепей 220 вольт, согласно стандартам, принятым СССР. Исключение составляют помещения с повышенной опасностью (относительная влажность выше 75%, наличие бетонных, кирпичных, металлических, земляных полов, жарких – выше 35 градусов Цельсия более чем в течение одних суток, имеющих внутри металлические трубы, стоки вод, прочие проводящие ток и заземленные конструкции). Импортная техника приходит, соответствуя иным требованиям. Заземление необходимо во всех случаях для правильной работы входных фильтров, отсеивающих вредные гармоники, защищающих сеть дома от помех. Характерно:

  1. Стиральным машинам.
  2. Системным блокам персональных компьютеров, мониторам.
  3. Холодильникам с электронным (не механическим) управлением.
  4. Печам СВЧ (микроволновкам).
Отсутствие заземление

Короткое замыкание

Если заземление (зануление) не выполнено, дом наполнится помехами, самочувствие людей ухудшится, в некоторых случаях можно получить средней силы удар током. Неприятный, шоковый укол. Приходится опасаться, находясь возле батарей, моек, раковин, различного рода водных, газовых металлических труб (включая, окрашенные). Кухонные плиты заземлены по иной причине: на корпус проскакивает искра при розжиге конфорки. Можно руководствоваться инструкцией, не рекомендуется предписания нарушать.

Заземление, как зануление, не требуется цепям переменного тока напряжением ниже 42 вольт, постоянного – до 110 вольт. Касается случая, когда оборудование стоит на металлической конструкции, прочно соединенной с грунтом. В некоторых источниках указывается: запрещено оборудование заземлять в трехфазных цепях с глухозаземленной нейтралью, если отсутствует зануление. При аварии будет выведено до половины напряжения фазы. Не каждому понятна суть дела, полезно будет разложить по пунктам:

  1. Зануление заключается в объединении корпуса, нейтрали.
  2. В исправной трехфазной цепи на нулевой провод приходится малая квота тока. И только при перекосах.
  3. Зануленный корпус сравнительно безопасен. Поскольку ток аварии через человека потечет умеренный, при перекосах фаз.
  4. Если корпус заземлить, при выходе потенциала на корпус, в полной мере напряжение прикладывается к человеку, случись авария. 220 вольт.
  5. Нейтраль объединена с фазами, при пробое потенциала не факт, что ток потечет по направлению к глухозаземленной части через тело человека. В других точках потенциал может быть ниже. Например, на соседней фазе. Ток пойдет в том направлении.
  6. Что касается отдельного защитного заземления, другого пути нет – через тело человека, с вытекающими последствиями (смерть, поражение электрическим током).

По указанным причинам трехфазные установки с глухозаземленной нейтралью запрещено оборудовать защитным заземлением, если отсутствует зануление. Имеется другой смысл мероприятия. Если типичные цепи можно защитить дифференциальным автоматом, трехфазные опасность преподносят с другого направления. В быту отслеживается утечка тока, минующая нейтраль, сигнализирующая об опасности (тело человека).

В промышленности важным считают сохранность оборудования, поскольку персонал сдал зачеты по технике безопасности. Считается, люди умеют о себе позаботиться. Автоматы защиты трехфазных цепей отслеживают другие сигналы, главным является перекос фаз. Случай, рассмотренный выше по пунктам, когда происходит пробой на корпус. Разумеется, повышенное потребление по фазе проходит контроль. Прочее определено типом трехфазного автомата защиты, которых в технике великое множество. Подбирать нужно под каждый отдельно взятый случай.

В цепях с изолированной нейтралью иногда разрешается обустраивать защитное заземление. Если недопустим немедленный останов оборудования, дополнительно выполняется оснастка для проверки контроля изоляции цепи. Если защитное зануление или заземление промышленных объектов выполнить нельзя, установки обслуживают с изолированных от грунта площадок. В рассмотрение принимается шаговое напряжение, для металлических конструкций невелико.

По рассматриваемой теме полезную информацию найдете в Правилах устройства электроустановок. Сегодня последней редакцией считают седьмую (7), но беспокоящимся о собственной безопасности полагается руководствоваться устаревшей шестой версией документа. Многие главы ПУЭ не являются требуемыми в обязательном порядке законом нормативами. Рассматривайте, как рекомендуемое профессионалами приложение желающим гарантированно обезопасить оборудование, персонал.

Требования к заземлению

Заземление является мерой более жесткой, нежели зануление. Создается отдельная шина малого сопротивления, ведущая к закопанному в грунт проводнику, обустроенному по требованиям стандартов. Зануление ограничивается объединением корпусов с глухозаземленной нейтралью (либо соответствующего вывода источника питания в однофазных сетях). Сопротивление до земли складывается длиной кабеля до подстанции или генератора. Величину определяют многие условия. Максимальная величина сопротивления цепи заземления твердо определена стандартами.

Бытовое заземление

Нерекомендуемый вариант заземления (TN-C-S)

Для бытовых систем электроснабжения требования лояльные. Сопротивление цепи заземления менее 10 Ом. Это легко выполняется путем использования медного провода с любым типом жил, разного сечения. Для проектирования конкретных систем полагается руководствоваться таблицами, содержащими сведения об удельном сопротивлении образцов. Для медного провода жилой сечением 0,5 квадратных миллиметра цифра составляет 0,035 Ом. Бухта длиной 100 метров не дотянет до критической отметки. Требования ужесточаются указанными аспектами:

  • Для установок напряжением выше 1 кВ сопротивление заземления выбирается равным 0,5 Ом. Проверка соответствия критериям ведется путем измерения специальным тестером. Прибор многофункциональный по причине высокой стоимости. В каталогах находится под именем измерителя сопротивления заземления.
  • Для генераторов, трансформаторов, прочих источников сопротивление заземления варьируется в зависимости от напряжения, составляет, соответственно, для 220, 380, 660 вольт – 8, 4, 2 Ом.

Есть другие исключения из правила, скрупулезному мастеру предписывается руководствоваться официальными документами. ГОСТ 12.2.007.0 сообщает о классах оборудования по электробезопасности. Сообразно защитное заземление обустраивается (классы О, ОI, I), либо отсутствует. Классификация используется многими документами, полезно изучить профессиональным работникам, просто желающим правильно, безопасно оборудовать жилище.

На производстве применение защитного заземления, зануления сопровождается дополнительными мерами уравнивания потенциала. Все металлические конструкции, коммуникации (трубы) присоединяются к шинам заземления. Аналогичное рекомендуется делать в ванных, кухнях жилых квартир. Ранее не требовалось, потому что трубы коммуникации были из оцинкованной стали, сегодня ставят пластиковые. Возникает необходимость в дополнительных мерах защиты. На производстве требуется заземлять (занулять) конструкции:

  1. Электроприводы.
  2. Корпусы электроустановок за упомянутыми выше исключениями.
  3. Металлические конструкции коммуникаций: лотки, желоба, трубы.
  4. Экраны низковольтных кабелей (до 50 В переменного, 120 В постоянного).
  5. Корпусы распределительных щитов и прочие аналогичного рода конструкции.
Схема заземления

Схема поражения напряжением прикосновения (зануление отсутствует)

Перечисленные элементы в защитном заземлении, занулении не нуждаются:

  1. Корпусы электрооборудования, элементов коммуникаций, установленных на металлических заземленных рамах, при наличии взаимного надежного электрического контакта.
  2. Металлическая арматура различного рода, установленная на деревянных конструкциях, столбах, если того отдельно не требуют иные правила, нормы.
  3. Корпусы установок II, III класса электробезопасности.
  4. Места вводов в здания, проходов через стены при вольтаже трассы до 25 В переменного, 60 В постоянного тока.

Классы помещений и проведение заземления

Авторы считают: заземление бытовых приборов не представляет сложностей. Если в доме отсутствует специальная шина, допускается (общежитейская мудрость, стандарты запрещают) использовать нулевой провод (проводится соответствующей коммутацией проводников внутри розетки, объединением с соответствующим лепестком). На эту тему можно долго разговаривать, вместо этого приведем несколько правил, которые электрик должен неукоснительно соблюдать:

  1. Фаза в розетке находится слева. При необходимости лепесток заземления заводится направо (нейтраль).
  2. При соблюдении п. 1 Г-образная вилка бытовой техники вставляется в розетку отводом вниз.
  3. Если сетевой фильтр компьютера взять в одну руку за шнур, в опущенном разветвителе фаза слева (по диагонали).
  4. У большей части аппаратуры фазный провод не отличается от нулевого, не будет ошибкой вставить штекер в розетку иной стороной. Главное, чтобы был занулен боковой лепесток.

На производстве зануляется, заземляется вся электротехника вне зависимости от вольтажа, мест, способов установки, если речь о взрывоопасных помещениях любого класса. Рядовых граждан случай должен интересовать, когда речь заходит про гараж.

  1. К зонам В-I относят те, где газы насыщенные образовывают взрывоопасные смеси с воздухом даже в нормальном режиме функционирования объекта.
  2. В-Iа – То же, что В-I, но с существенной оговоркой: опасность возникает из-за аварии. Расчет ведется по ГОСТ Р 51330.9 (иным документам). Если наименование класса взрывоопасности отличается от приведенных списком, отыскивается таблица примерного соответствия.
  3. К В-Iб добавляется ряд условий. Высокий нижний предел взрывоопасности газа (ГОСТ 12.1.005), низкая опасность. Либо наличие резкого запаха. Природный газ лишен выраженного аромата. Для индикации утечки в него примешивают специальный одорант. Хозяин квартиры сразу замечает аварию. Понижается класс взрывоопасности квартиры. Сюда относят специализированные производственные помещения с обращением водорода более 5% по объему, где нештатная ситуация предусмотрена особенностями работы вентиляции.
  4. ВI-г – зоны с наружными установками, помещения не затрагивающие.

Прочие случаи обращения взрывоопасных веществ относятся к классам В-II и ниже. Гараж считается потенциально взрывоопасным помещением, эксплуатация электрического оборудования здесь сопряжена с риском.

vashtehnik.ru

3. Требования к заземляющим устройствам электромедицинской аппаратуры

 

3.1. Устройство защитного заземления электромедицинской аппаратуры должно удовлетворять требованиям действующих "Правил устройства электроустановок" (ПУЭ), Строительным нормам и правилам ( CH иП), а также требованиям настоящей Инструкции.

3.2. Сопротивление заземляющего устройства электромедицинской аппаратуры, должно быть не более 4 Ом для сетей с изолированной нейтралью, а для повторного заземления нулевого провода в сетях с глухозаземленной нейтралью не более 10 Ом.

Примечание: Для рентгеновских аппаратов допускается сопротивление заземляющего устройства не более l 0 Ом.

3.3. Для защитного заземления электромедицинской аппаратуры различного назначения следует применять одно общее заземляющее устройство.

Допускается устройство отдельного контура рабочего заземления, если это необходимо для нормальной работы высокочувствительных регистрирующих приборов - энцефалографов и др., т.е. для устранения наводок, маскирующих полезный сигнал при снятии биопотенциалов.

3.4. Сопротивление заземляющего устройства, используемого для заземления электромедицинской аппаратуры различного назначения, должно удовлетворять требованиям к заземлению той аппаратуры, для которой необходимо наименьшее сопротивление заземляющего устройства. Например, при использовании общего заземляющего устройства для защитного заземления рентгеновских и физиотерапевтических аппаратов сопротивление заземляющего устройства должно быть не более 4 Ом.

3.5. Заземлители подразделяются на естественные и искусственные.

3.5.1. В качестве естественных заземлителей рекомендуется использовать, проложенные в земле водопроводные и другие металлические трубопроводы, обсадные трубы артезианских колодцев, скважин, металлические шпунты гидротехническнх сооружений, металлические конструкции и арматуру железобетонных конструкций зданий и сооружений и т.п., имеющие надежное соединение с землей и сопротивление растеканию тока не более указанных в п. 3.2.

3.5.2. Запрещается использовать и качестве естественных заземлителей трубопроводы горючих жидкостей, горючих или взрывчатых газов, трубопроводы, покрытые изоляцией для защиты от коррозии, заземлители молниеотводов.

3.5.3. Если естественные заземлители имеют сопротивление растеканию тока, превышающее величины, указанные в п. 3.2, то необходимо устройство искусственных заземлителей.

В качестве искусственных заземлителей следует применять:

1) вертикально погруженные в грунт электроды из стальных труб, угловой стали, стальных стержней и т.п.;

2) горизонтально проложенные стальные полосы, круглую сталь и т.п.

Если грунт может вызвать усиленную коррозию, следует применять оцинкованные заземлители. Расположенные в земле заземлители и заземляющие проводники не должны иметь окраски.

Наименьшие размеры стальных заземлителей и заземляющих проводников указаны в таблице 1.

 

Таблица 1

Наименьшие размеры стальных заземлителей и заземляющих проводников

 

Наименование

В зданиях

В наружных установках

В земле

Круглые стержни, диаметр, мм

5

6

10

Прямоугольные, сечение, мм2

24

48

48

толщина, мм

3

4

4

Угловая сталь, толщина полок, мм

2

2,5

4

Стальные газопроводные трубы,

толщина стенок, мм

2,5

2,5

3,5

Стальные тонкостенные трубы,

толщина стенок, мм

1,5

не допускаются

 

3.6. Наименьшие сечения медных заземляющих проводников приведены в таблице 2.

 

Таблица 2

Наименьшие сечения медных заземляющих проводников

 

Наименование

Сечение мм2

Голые одножильные проводники при открытой прокладке

4

Изолированные многожильные провода

1,5

Заземляющие жилы кабелей или многожильных проводов в общей защитной оболочке с фазными жилами

1

 

3.7. Не допускается размещение заземлителей в местах, где возможна пропитка грунта маслами, нефтью и т.п., а также вблизи трубопроводов горячей воды, пара и других сооружений, вызывающих высыхание почвы. В указанных случаях сопротивление заземлителей резко возрастает.

3.8. Траншеи, вырытые для прокладки заземлителей, должны засыпаться землей, не содержащей строительного мусора, камней, и т.п., и должны быть хорошо утрамбованы.

3.9. Естественные заземлители должны быть присоединены к магистрали заземления посредством сварки не менее, чем двумя проводниками, присоединенными к заземлителю в разных местах.

3.10. В качестве заземляющих проводников электромедицинской аппаратуры должны быть использованы проводники, специально предназначенные для этой цели, а также нулевые провода. Использование в качестве заземляющих проводников всякого рода металлических конструкций зданий, стальных труб электропроводок, алюминиевых оболочек кабелей и т.п. допускается только как дополнительное мероприятие.

3.11. Запрещается использовать в качестве заземляющих проводников электромедицинской аппаратуры водопроводные трубы, проходящие в здании, сети центрального отопления, канализации и трубопроводы для горючих и взрывоопасных смесей.

3.12. Соединения заземляющих проводников должны обеспечивать надежные контакты и выполняться, как правило, посредством сварки. Сварка осуществляется внахлестку. Длина нахлестки (длина сварочных швов) должна быть не менее двойной ширины при прямоугольном сечении и не менее шести диаметрам при круглом сечении.

3.13. Заземляющие проводники в помещениях должны быть доступны для осмотра. Это требование не относится к нулевым жилам кабелей, а также заземляющим проводникам, проложенным в трубах.

3.14. Прокладка заземляющих проводников через стены и перекрытия должна выполняться в трубах или иных жестких обрамлениях.

3.15. Отрезки стальных шин, соединяющих магистраль заземления здания с заземлителем и места присоединения к нему (места сварки), целесообразно покрывать битумом для защиты от коррозии.

3.16. Открыто проложенные голые заземляющие проводники, а также все конструкции, провода и полосы магистрали заземления должны быть окрашены в черный цвет. Допускается окраска открытых заземляющих проводников в иные цвета в соответствии с оформлением по ним, но при этом они должны иметь в местах присоединений и ответвлений не менее чем две полосы на расстоянии l 50 мм друг от друга черного цвета.

3.17. У мест ввода магистралей заземления в здания должны быть опознавательные знаки .

3.18. Магистраль заземления должна использоваться только по своему назначению. Использование магистрали для иных целей запрещается.

3.19. Заземляющие проводники должны быть предохранены от механических и химических воздействий. В местах пересечения заземляющих проводников в земле с трубопроводами, кабелями и в других местах, где возможны механические повреждения заземляющих проводников, последние должны быть защищены.

Защита от химических воздействий осуществляется соответствующими покрытиями (например, цинковым).

3.20. В заземляющих, нулевых, зануляющих проводах и в третьем уравнительном проводе трехпроводной сети постоянного тока запрещается ставить отключающие устройства и предохранители. Отключающие устройства и предохранители следует включать в фазные провода.

3.21. Заземление электромедицинской аппаратуры должно осуществляться при помощи отдельных ответвлений. Запрещается последовательное включение в заземляющий проводник аппаратов или нескольких заземляемых частей аппарата (например, рентгеновского).

3.22. Присоединение заземляющего проводника к нетоковедущим металлическим частям аппарата должно осуществляться с помощью зажима защитного заземления аппарата. Около зажима защитного заземления электромедицинской аппаратуры должен быть нанесен знак согласно ОН 64-1-203-69.

При наличии сотрясений или вибраций должны быть приняты меры против ослабления контакта (контргайки, контршайбы и т.п.).

3.23. При заземлении передвижной и переносной электромедицинской аппаратуры класса 01 отдельным проводником заземляющий проводник должен быть медным, гибким, изолированным, сечением не менее 1,5 мм2.

3.24. Для снижения сопротивления заземляющего устройства в плохо проводящих грунтах (песчаных, скалистых, вечно мерзлых) при сооружении искусственных заземлителей должны проводиться следующие мероприятия:

1. Устройство глубинных заземлителей (дают существенный эффект в песчаных грунтах).

2. Специальная обработка грунта (поваренной солью, шлаком смоченным водой, графитом и т.д.).

3. Устройство выносных заземлителей в места с меньшим удельным сопротивлением земли.

4. В районах вечной мерзлоты следует помещать заземлители в непромерзаемые водоемы, в талые зоны, использовать артезианские скважины.

3.25. Каждое находящееся в эксплуатации заземляющее устройство должно иметь паспорт, содержащий схему заземления, его основные технические данные, данные о результатах проверки состояния заземляющего устройства, о характере произведенных ремонтов и изменениях, внесенных в устройство заземления.

 

 

studfiles.net

Заземление и зануление электроустановок

Вся наша жизнь неотделима от всевозможных электрических приборов. Выход из строя любого электрооборудования – это частое и вполне нормальное явление, ни одно устройство не может работать вечно и без единого сбоя. Наша задача — обезопасить этих электрических помощников от короткого замыкания или возникающих в цепи перегрузок, а себя – от повреждения организма высоким напряжением. В первом случае на помощь приходят всевозможные защитные аппараты, а вот для  защиты человека применяется заземление и зануление электроустановок. Это одна из самых сложных частей электрики, но мы попробуем разобраться, в чем же различие этих работ, и в каких случаях нужно применять те или иные защитные меры.

Если автоматы, пробки и другие защитные устройства не срабатывают на возникшую неисправность, и в результате образуется пробой внутренней изоляции, на металлическом корпусе установки возникает повышенное напряжение.  Касание человеком такого прибора может привести к параличу мышц (при силе тока 20-25 мА), препятствующему самостоятельному отрыву от контакта, аритмии, нарушениям тока крови (при 50-100 мА) и даже летальному исходу.

Если части электроустановки в силу технических особенностей должны находиться под напряжением, то их  обязательно ограждают в соответствии с общепринятой техникой безопасности, например, специальными кожухами, барьерами или сетчатыми заграждениями. Для того чтобы предотвратить случайное поражение током при повреждении изоляционных слоев, применяется защитное заземление и зануление. Чтобы понять, чем отличается заземление от зануления, нужно знать, что они собой представляют.

Часто начинающие электрики не совсем понимают, в чем же заключается отличие зануления от заземления. Заземление – это соединение электроустановки с землей с целью снижения напряжения прикосновения до минимума. Оно применяется только в сетях с изолированной нейтралью. В результате установки заземляющего оборудования большая часть тока, поступающая на корпус, должна уйти по заземляющей части, сопротивление которой должно быть меньше остальных участков цепи.

Но это не единственная функция заземления. Защитное заземление электроустановок еще и способствует увеличению аварийного тока замыкания, как бы это ни противоречило его назначению. При использовании заземлителя с высоким значением сопротивления ток замыкания может быть слишком мал для срабатывания защитных устройств, и установка в аварийной ситуации останется под напряжением, представляя огромную опасность для человека и животных.

[include id=»1″ title=»Реклама в тексте»]

Заземлитель с  проводниками образует заземляющее устройство, где он, по сути, и есть проводник (группа проводников), соединяющий токопроводящие части установок с землей. По назначению эти устройства разделяются на следующие группы:

  • грозозащитные, для отвода импульсного тока молнии. Применяются для заземления молниеотводов и разрядников;
  • рабочие, для поддержания необходимого режима работы электроустановок, как в нормальных, так и в аварийных ситуациях;
  • защитные, для предотвращения повреждения живых организмов электрическим током, возникающим при пробое фазного провода на металлический корпус устройства.

Все заземлители делятся на естественные и искусственные.

  1. Естественные – это трубопроводы, металлоконструкции железобетонных сооружений, обсадные трубы и другие.
  2. Искусственные заземлители – это конструкции, сооружаемые специально  для этой цели, то есть стальные стержни и полосы, уголковая сталь, некондиционные трубы и другое.

Важно: для использования в качестве естественного заземления не подходят трубопроводы горючих жидкостей и газов, трубы, покрытые антикоррозийной изоляцией, алюминиевые проводники и оболочки кабелей. Категорически запрещается использовать в качестве заземляющих проводников в жилых помещениях водопроводные и отопительные трубы.

В зависимости от схемы соединения и количества нулевых защитных и рабочих проводником можно выделяются следующие системы заземления электроустановок:

Первая буква в названии системы говорит о типе заземления источника питания:

  • I – токоведущие части полностью изолированы от земли;
  • T – нейтраль источника питания соединяется с землей.

По второй букве можно определить, каким образом заземлены открытые проводящие части электроустановки:

  • N – непосредственная связь с точкой заземления источника питания;
  • T – непосредственная связь с землей.

Буквы, стоящие сразу за N, через дефис, говорят о способе устройства защитного PE и рабочего N нулевых проводников:

  • C – функции проводников обеспечиваются одним проводником PEN;
  • S – функции проводников обеспечиваются разными проводниками.

Устаревшая система TN-C ↑

Такое заземление электроустановок используется в трехфазных четырехпроводных и однофазных двухпроводных сетях, которые преобладают в зданиях старого образца. К сожалению, эта система, несмотря на свою простоту и доступность, не позволяет достичь высокого уровня электробезопасности и на вновь строящихся зданиях не применяется.

Для модернизации старых домов TN-C-S ↑

Защитное заземление электроустановок такого типа используется преимущественно в реконструируемых сетях, где рабочий и защитный проводники объединены во вводном устройстве схемы. Другими словами, эта система используется в том случае, если в старом здании, где эксплуатируется заземление типа TN-C, планируется расположить компьютерную технику или другие телекоммуникации, то есть для осуществления перехода к системе TN-S. Эта относительно недорогая схема отличается высоким уровнем безопасности.

Системы TN-C-S и TN-C

Система TN-C-S позволяет перейти от устаревшей TN-C к TN-S

Специфика системы TN-S ↑

Такая система отличается расположением нулевого и рабочего проводников. Здесь они прокладываются отдельно, причем нулевой защитный проводник PE соединяет сразу все токопроводящие части электроустановки. Чтобы избежать повторного заземления, достаточно устроить трансформаторную подстанцию, имеющую основное заземление. К тому же такая подстанция позволяет добиться минимальной длины проводника от входа кабеля в электроустановку до заземляющего устройства.

Система TN-S

Система TN-S:1. Заземлитель;2. Токопроводящие части установки.

Система TT, особенности ↑

Система, где все токоведущие открытые части непосредственно связаны с землей, причем заземлители электроустановки не имеют электрической зависимости от заземлителя нейтрали подстанции, получила название TT.

Система заземления TT

Система заземления TT отличается наличием заземлителей на каждую токопроводящую часть установки

Характерные отличия системы IT ↑

Отличием этой системы является изоляция нейтрали источника питания от земли или ее заземление через устройства с большим сопротивлением. Такой способ позволяет максимально снизить ток утечки на корпус или в землю, поэтому его лучше использовать в зданиях, где установлены жесткие требования по электробезопасности.

Система IT

Система IT:1. Сопротивление заземления нейтрали источника питания.2. Заземлитель.3. Открытые токопроводящие части.4. Заземляющее устройство.

Зануление – это соединение металлических частей, не находящихся под напряжением, либо с заземленной нейтралью понижающего источника трехфазного тока, либо с заземленным выводом генератора однофазного тока. Используется для того, чтобы при пробое изоляции и попадании тока на любую нетоковедущую часть устройства, происходило короткое замыкание, приводящее к быстрому срабатыванию автоматического выключателя, перегоранию плавких предохранителей или реакции прочих систем защиты. В основном применяется в электроустановках с глухозаземленной нейтралью.

Схема зануления электроустановок

Принципиальная схема зануления электроустановок

Дополнительная установка УЗО в линию приведет к его срабатыванию в результате разности сил тока в фазном и нулевом рабочем проводе. Если будут установлены и УЗО, и автоматический выключатель, то пробой приведет к срабатыванию либо обоих устройств, либо к включению более быстродействующего элемента.

Важно: При установке зануления необходимо учитывать, что ток короткого замыкания обязательно должен достигать значения плавления вставки предохранителя или отключения автоматического выключателя, иначе свободное протекание тока замыкания по цепи приведет к возникновению напряжения на всех зануленных корпусах, а не только на поврежденном участке. Причем значение этого напряжения будет равно произведению сопротивления нулевого проводника на ток замыкания, а значит  чрезвычайно опасным для человеческой жизни.

За исправностью нулевого провода необходимо следить самым тщательным образом. Его обрыв приводит к появлению напряжения на всех зануленных корпусах, так как они автоматически оказываются подключенными к фазе. Именно поэтому категорически запрещается монтаж в нулевой провод любых средств защиты (выключателей или предохранителей), образующих его разрыв при срабатывании.

Для того чтобы уменьшить вероятность повреждения током при обрыве нулевого провода, через каждые 200 м линии выполняются повторные заземления. Такие же меры принимаются на концевых и вводных опорах. Сопротивление каждого повторного заземлителя не должно превышать 30 Ом, а общее сопротивление всех таких заземлений – 10 Ом.

Главная разница между занулением и заземлением заключается в том, что при заземлении безопасность обеспечивается быстрым снижением напряжения тока, а при занулении – отключением участка цепи, в котором случился пробой тока на корпус или любую другую часть электроустановки, при этом в промежуток времени между замыканием и прекращением подачи питания происходит снижение потенциала корпуса электроустановки, в противном случае через тело человека пройдет разряд электрического тока.

Чем отличается зануление от заземления

Электрическая схема заземления и зануления

Во всех электроустановках, где нейтраль изолирована, обязательно выполняется защитное заземление, а также должна предусматриваться возможность быстрого поиска замыканий на землю.

Если устройство имеет глухозаземленную нейтраль, а его напряжение менее 1000 В, то можно применять только  зануление. При оснащении такой электроустановки разделяющим трансформатором, вторичное напряжение должно быть не более 380 В, понижающим – не более 42 В. При этом от разделяющего трансформатора разрешается питать только один электроприемник с номинальным током защитного устройства не более 15 А. В этом случае запрещается заземление или зануление вторичной обмотки.

[include id=»2″ title=»Реклама в тексте»]

Если нейтраль трехфазной сети до 1000 В изолирована, то такие электроустановки должны иметь защиту от пробоя в результате повреждения изоляции между обмотками трансформатора и пробивной предохранитель, который монтируется в нейтраль или фазу со стороны нижнего напряжения.

Защитное заземление и зануление электроустановок необходимо проводить в следующих случаях:

  1. При переменном номинальном напряжении свыше 42 В и постоянном номинальном свыше 110 В особо опасных и наружных установках.
  2. При переменном напряжении свыше 380 В и постоянном свыше 440 В в любых электроустановках.

Заземляются корпуса электроустановок, приводы аппаратов, каркасы и металлические конструкции распределительных шкафов и щитов, вторичные обмотки трансформаторов, металлические оболочки кабелей и проводов, кабельные  конструкции, шинопроводы, короба, тросы, стальные трубы электропроводки и электрооборудование, расположенное на движущихся частях механизмов.

В жилых и общественных зданиях обязательно подлежат занулению (заземлению) электроприборы мощностью свыше 1300 Вт. Если подвесные потолки выполнены из металла, то необходимо заземлить все металлические корпуса осветительных приборов. Ванны и душевые поддоны, выполненные из металла, должны соединяться с водопроводными трубами металлическими проводниками. Делается это для выравнивания электрических потенциалов. Для заземления корпусов кондиционеров воздуха, электроплит и других электроприборов, мощность которых превышает 1300 Вт, применяется отдельный проводник, присоединяемый к нулевому проводнику сети питания. Его сечение и сечение фазного провода, проложенного от распределительного щита, должны быть равными.

Как заземлить ванну

Для выравнивания электрических потенциалов ванну следует обязательно замкнуть на водопроводные трубы

С полным перечнем оборудования, требующего заземления или зануления, а также устройств, где наоборот, допускается пренебречь этими защитными мероприятиями, можно ознакомиться в ПУЭ (Правилах устройства электроустановок). Здесь же можно найти все основные правила заземления электроустановок.

Устройство заземления и зануления  — это весьма ответственная работа. Малейшая ошибка в расчетах или пренебрежение, казалось бы, одним незначительным требованием может привести к большой трагедии. Выполнять заземление обязаны только люди, имеющие необходимые знания и опыт работы.

strmnt.com

Вебинар "Нормативные документы и требования к заземлению и молниезащите"

Нормативные документы и требования к заземлению и молниезащите

 

— Коллеги, здравствуйте! Итак, мы пройдемся по документации, которая необходима при выполнении электромонтажных работ. Чаще всего она необходима на стадии выполнении работ и очень часто бывает, когда еще не получено техническое задание, а оговариваются какие-то предварительные условия, на момент монтажа уже возникают сложности и начинают требовать сертификаты. Мы сейчас коротко пробежимся по документациям, которые являются основополагающими для заземления и молниезащиты, на что ссылаться, на что обращать внимание и что из этого вы должны знать.

Какими нормативными документами должен руководствоваться монтажник

 

— Итак, нормативные документы. При выполнении электромонтажных работ по заземлению, мы, прежде всего, ориентируемся на ГОСТы, правила электроустановок, правила технической эксплуатации, СНИПы, руководящие документы, стандарты организации, правила пожарной безопасности.

Монтаж заземления

 

— И необходимый набор документации. Прежде всего, мы ориентируемся сейчас на «Правила устройства электроустановок» 7-е издание, которое отменило предыдущее 6-е издание. И в частности хотел бы остановиться на некоторых моментах: пункт 1.7.55 – для заземления электроустановок разных назначений напряжений территориально сближенных следует, как правило, применять одно общее заземляющее устройство. То есть очень часто возникает вопрос, когда на частных объектах есть газовые котлы и электроустановки, заказчики спрашивают, можно ли объединять заземление газового котла и электроустановок. Соответственно ссылаемся на пункт 1.7.55, где позволяют нам использовать одно общее заземление при условиях, что для бытовых объектов – это третий класс защиты. У нас сопротивление заземления для газового котла должно быть не более 10 Ом, для электроустановок не более 30 Ом, соответственно, так как у нас наиболее требовательным в данном случае является газовый котел, то мы на него и ориентируемся. Иногда задают вопросы, для чего заземлять газовые котлы? Во-первых, прежде всего в газовых котлах присутствует электроника, которая достаточно чувствительна к перепадам напряжения и из-за отсутствия заземления выходит из строя. То есть и газовый котел при этом ремонтируется дорого. Плюс во время работы газового котла в трубопроводах возникают микровзрывы, которые в принципе не приводят к взрыву котла как такого, но разрушает трубопровод изнутри, и он изнашивается гораздо быстрее. Если не применять заземление газового котла, то вам трубопровод газа придется через год – полтора менять. Когда у вас газовый котел заземлен так как нужно, срок эксплуатации его продлевается. Также в пункте 1.7.52 оговаривается, что применение двух и более мер защиты в электроустановки не должно оказывать взаимного влияния снижающего эффективность каждого из них. Если мы используем заземление, как я говорил, не только для электроустановок, но и для газового котла, то его общая эффективность должна быть не больше 10 Ом. Далее хотел бы обратить ваше внимание на пункт 1.7.55 – заземляющее устройство защитного заземления электроустановок зданий и сооружений молниезащиты второй и третьей категории, как правило, должно быть общим. То есть это то, что касается непосредственно вопроса: можно ли объединять молниезащиту и электропроводку газового котла? В данном пункте как раз оговаривается, что это просто необходимо делать. Далее хотел бы обратить ваше внимание на пункт 1.7.57 – электроустановка напряжением до 1 кВ в жилых, общественных и промышленных зданиях и наружных установок, должна, как правило, получать питание от источника с глухозаземленной нейтралью с применением системы. Для защиты от поражений электрическим током при косвенном прикосновении таких электроустановок должно быть выполнено автоматическое отключение питания в соответствии с пунктом 1.7.78 – 1.7.79. Очень часто, когда объект уже запитан и существует непосредственно заземление от электроподстанции, задают вопрос, нужно ли повторное заземление делать или нет. В данном пункте как раз оговорено, что повторное заземление делать нужно. Пункт 1.7.58 – питание электроустановок напряжением до 1 кВ переменного тока от источника с изолированной нейтралью с применением системы следует выполнять, как правило, при недопустимости перерыва питания при первом замыкании на землю или при открытой проводящей части связанны системы выравнивания потенциалов. В таких электроустановках для защиты косвенного прикосновения при первом замыкании на землю должно быть выполнено защитное заземление в сочетании с контролем изоляции сети или применено УЗО с номинальным отключающим током не более 30 мА. При двойном замыкании на землю должно быть выполнено автоматическое отключение питания в соответствии с пунктом 1.7.81. Также здесь оговаривается, что повторное заземление электроустановок напряжением до 1 кВ получающее питание по воздушным линиям должно выполняться в соответствии с пунктом 1.7.102 – 1.7.103. Соответственно ссылаясь на эти пункты и прочитав их, мы можем найти ответы на наши вопросы и то, что оговаривается непосредственно в правах и в эксплуатации электроустановок.

Монтаж в низковольтных электроустановках

 

— Соответственно перед нами ГОСТ, который нормализирует все отношения. И прошу обратить внимание, что в ГОСТе не существует черной стали, то есть то, что мы привыкли в общественном понимании – к контуру заземления, когда заглубляются черные уголки или арматура. В современных ГОСТах она не оговаривается. Точно также в этом плане хотел бы обратить внимание, что при использовании контура заземления мы не можем штыри заглубить в тот же самый уголок или арматуру заглубить более чем на 2 м, что и было оговорено в предыдущих правилах эксплуатации. Так как мы находимся в зоне заморозков, то земля у нас промерзает где-то на метр на полтора и получается, что зимой верхняя часть заземления работает намного хуже, чем та, что на глубине. Используя стандартное штыревое заземление, мы можем заглубиться в землю гораздо глубже, избежав верхних слоев, при этом общая площадь заземления получается примерно такая же. Но, если мы, например, используем три штыря, связанных в контур между собой треугольником, сваренным общей площадью, общей длиной где-то в 6 метров при этом зимой по метру каждого уголка у нас не работает. Соответственно по факту мы получаем только три метра в земле, которые эффективно работают. Когда мы используем 6-ти метровое стандартное заземление, мы заглубляем его на 6 метров глубиной и теряем только один метр и по факту у нас работает 5 метров в штыре.

Требования к материалам, применяемым для заземлителей

 

— Далее в ГОСТе оговорено соотношение диаметров заземляющих устройств, какие они должны быть. При этом хочу обратить ваше внимание на те штыри, которые присутствуют у нас на рынке, как непосредственно производство ZANDZ, так и у других производителей. Лично я в своей практике предпочитаю не использовать сталь горячего цинкования, потому что разница с омедненной сталью небольшая, но по эффективности омедненная сталь гораздо лучше и выше. В своей практике я как-то пробовал сравнивать: на одном участке монтировал заземление из нержавеющей стали и из омедненной стали. Участок оказался сложным, так монтаж происходил практически в воду, то есть, выкопав 70 см глубиной ямку для того, чтобы смонтировать туда заземление, уже на втором – третьем штыре туда набежала вода, и по факту я продолжал монтировать заземление в воду. Когда я на этом же участке в другой его части начал монтировать заземление из омедненной стали, на первых штырях у меня показатели были хуже, но когда я добил все четыре штыря медного, общие показания показали гораздо эффективнее, чем нержавейка. При этом я сделал выводы: когда грунтовые воды на объекте очень высоки, то конечно, лучше использовать нержавейку, потому что она будет долговечной и меньше подвержена коррозии, чем медь. Если же сухая или влажная земля – глина, суглинок и так далее, то лучше всего использовать омедненную сталь. Опять же касаясь, непосредственно, бытовых газовых котлов и электропроводки, если участок сухой то мне ни разу не удалось обойтись одним штырем, то есть приходилось монтировать два шестиметровых штыря на расстоянии таком же, на котором мы смонтировали первый штырь. Соответственно, если первый штырь у нас 6 метров, то отступаем 6 метров и монтируем второй штырь. И для ориентировки они, как правило, показывают среднее удельное сопротивление, то есть если мы на первом штыре добились 20 Ом сопротивление, на втором штыре тоже 20 Ом, то когда мы их соединяем между собой полосой или проволокой, общий показатель будет не больше 10 Ом. В некоторых случаях играет емкостная часть.

Монтаж на высоковольтных объектах

 

— На высоковольтных объектах мы используем циркуляр №11/2006 электромонтажный. Здесь, на какие моменты хотел бы обратить внимание: заземляющие устройства электроустановок напряжением свыше 1 кВ должны выполняться с требованием либо сопротивлению – это пункт 1.7.90 либо по напряжению 1.7.91. Также с соблюдением требований к конструктивному выполнению, которое регулируется пунктами 1.7.92 – 1.7.93 и к ограничению напряжению на заземляющем устройстве – требования 1.7.89, 1.7.93. Эти требования не распространяются на заземляющие устройства опор высоковольтных линий.

Измерение сопротивления заземления

 

— Измерение сопротивления заземления нужно осуществлять соответствующими приборами. На данном слайде мы видим прибор, который позволяет измерять не только сопротивление заземления, но и удельное сопротивление грунта. В последнее время мы начали собирать статистику, насколько теория соотносится с практикой. То есть перед каждым монтажом пытаемся замерить сначала удельное сопротивление грунта, после этого монтируем заземление и проверяем, насколько расчеты оказались верны. К сожалению, при замерах сопротивления грунта не всегда возможно учесть еще какие-то субъективные данные, такие как грунтовые воды, например, а в некоторых случаях на глубине 3-х – 4-х метров может быть песок и так далее. В некоторых случаях с помощью именно глубинного заземления можно решить какие-то моменты. У меня был объект, и нужно было выполнить заземление для МРТ центра, где требования по заземлению должно быть не более 4 Ом. До меня там поработали традиционные монтажники. Вы видите кусочек полосы, к которой был прикреплен прибор. И они забили 8 штырей на расстоянии 3 метров друг от друга и соединили их такой полосой. То есть по факту они 4 Ом не добились, на приборе показывалось 154,5 Ом. Естественно клиент вызвал меня и спросил, можно ли правильно справиться с данной ситуацией. И мы решили вопрос именно глубинным заземлением. Дело в том, что объект промышленный и там порядка 10 метров было просто шлакового отсева. Благодаря глубинным штырям мы прошли этот отсев и вошли в воду. На данный момент вы видите показания двух сразу штырей. Сначала мы смонтировали один штырь на 13,5 метров, а дальше он просто не пошел. Отступили 13 метров, смонтировали второй штырь и когда мы их соединили, то достигли требуемого сопротивления 3.22 Ом. То есть при монтаже заземления всегда нужно делать на сухую погоду, на влажный грунт. Если есть грунтовые воды, то они, как правило, уходят летом. И при монтаже заземления всегда старайтесь выбрать те участки, где будет дольше сохраняться влажная земля. Это или под стоком дождевых вод, если на гражданских объектах, в коттеджах – это рядом с колодцами, рядом с баней, рядом с туалетом, где земля будет больше времени сырая. Соответственно сырая земля в нашем случае только в помощь. На данном объекте, как вы видите, мы только на штырях достигли 3,22 Ом. И самое интересное, что когда мы подсоединились к старому заземлению, мы вообще достигли сопротивления 0,27 Ом. То есть я предположил, что за счет того, что было вбито много штырей, мы добились хорошей емкости и достигли сопротивления.

Заземление телефонных станций

 

— Заземление телефонных станций. По сути дела заземлением лично я начал заниматься как телефонист, потому что любую телефонную станцию нужно заземлять для того, чтобы она корректно работала. Многие, наверное, сталкивались с телефонией, когда работали с проблемой зависания линий. И зависания линий происходят прежде всего, когда операторы приходят к сигналу отбоя. Сигнал отбоя у нас по ГОСТу двух типов бывает: когда плюс на минус меняется или при кратковременном обесточивании. Когда переполюсовка, то в большинстве случаев срабатывает сигнал отбоя, а когда идет кратковременный сбой, так как мы знаем, что в электронике все составляющие заземляются непосредственно на корпус. И если корпус не заземлен, то с какого-нибудь конденсатора может остаточное напряжение остаться на корпусе. Соответственно АТС не отлавливает сигнал отбоя и продолжает держать его линию занятой, после чего или оператор через какое-то время отбивает. И получается, что по факту по телефонной линии никто не говорит, а дозвониться не могут, потому что она занята.

 

 

Полезные материалы для проектировщиков:

 

www.zandz.ru

Правила устройства электроустановок заземления

Электричество—это коммуникация, которая встречается в каждом жилом помещении. Порой даже никто не задумывается о скрытой опасности, которую несет электрическая сеть, находящаяся в неправильной эксплуатации. С целью обезопасить собственную жизнь и имущество дома, люди стали практиковать установку заземляющих устройств. Самостоятельный монтаж подобной системы требует знать ПУЭ заземления.

Благодаря неблагоприятным природным и механическим воздействиям многие приборы ежедневного обихода могут выйти из строя, а, чтобы снизить подобный риск, проводится установка контура заземления.

Чем опасно отсутствие заземления?

Если вы обратились к нашей статье, значит продумываете проект обустройства заземляющих элементов, которые требуют руководстваться установленными государством правилами, но прежде чем приступить к их изучению, давайте убедимся, что отсутствие подобной конструкции действительно опасно.

  • Без заземления увеличивается шанс на происхождение коротких замыканий;
  • отсутствует возможность сети контролировать подачу напряжения;
  • подключение сверхтоков приведет к воспламенению;
  • при ударе молнией выйдет строя вся важная аппаратура в доме;
  • в случае неправильного монтажа электрической сети, ток может поразить человека.

За последнее время весьма участились случаи создания заземляющих контуров в частном секторе. Зачастую это связано с многочисленным использованием бытовой техники и большой нагрузкой на электрические цепи.

Фото: ПУЭ заземления как использовать и что применять на практике

Один из вариантов установки заземления

Важно! Обустройство заземления в домашних условиях должно проходить в комплексе с установкой автоматического выключателя и УЗО.

Выдержка из нормативных документов: ГОСТ заземления

Вкратце рассмотрим несколько значимых положений из требований к заземляющим устройствам. Итак, общие положения гласят: заземление должно играть защитную роль, то есть защитить человека и оборудование от поражения опасным напряжением; устраивая контур заземления следует использовать исключительно металлические конструкции, соприкасающиеся с эквивалентом «земли»; заземлить и занулить нужно все металлические части электрических приспособлений, доступные для прикосновения человеком или животными.

Из нормативной документации можно выделить правило, которое подтверждает, что использовать нужно преимущественно естественные заземлители. Разумеется, не следует забывать о погодных условиях, так как создание контура заземления требуется проводить в сухую погоду.

Какие учитывают нормы устройства сетей заземления?

В основу монтажных работ включаются основные правила и инструкция, утверждённая государством. Как мы уже говорили выше, важно использовать естественные заземлители. Вам не потребуется установка вспомогательных электродов в том случае, если природные заземляющие контуры будут соответствовать требованиям к заземлению.

В качестве природных заземлителей принято использовать:

  1. земляные трубопроводы;
  2. скважинные трубы;
  3. бетонные конструкции, соприкасающиеся непосредственно с землей;
  4. элементы гидротехнических сооружений;
  5. рельсовые магистральные пути.

Нельзя для устройства контура применять чугунные детали и трубопроводы. Любые виды заземлителей, кроме тех, что соприкасаются с линиями электропередач, обязательно связываются с общей магистралью заземления двумя проводниками.

Фото: ПУЭ заземления как использовать и что применять на практике

Заземление дома по требованиям ГОСТа

Что такое СНиП заземления?

СНиП—это комплекс собранных требований, утвержденных государственными актами и документами, относительно устройства и монтажа заземлителей и электроустановок.

Важно! Установку элементов защитного заземления или зануления следует проводить в соответствии с нормами СНиП.

Обычно в любых условиях прокладка контура заземления производится в два этапа.

Первым делом производится сооружение опор и конструкций внутри зданий и снаружи. Они предназначаются для установки щитков для приема защитных шин, а также для электрического оборудования. Зачастую, подобные работы выполняются в комбинации с основными строительными стадиями. Желательно, чтобы наружные и внутренние конструкции обустраивались, опираясь на один график.

Следующий рабочий этап заключается в непосредственном подсоединении проводников и остальных элементов, которые будут идти к контуру заземления. После проведения данных операций нужно сделать завершающий штрих, то есть установить санитарно-технические трубопроводы и вентиляционные коробки. Не забывайте придерживаться нормативов, касательно безопасности работы.

Как обезопасить себя на момент проведения монтажных работ?

Важно! Несоблюдение правил может быть смертельно опасным для вашего здоровья.

Фото: ПУЭ заземления: как использовать и что применять на практике

Схема систем заземления

Чтобы произвести правильно функционирующую конструкцию, рекомендуется придерживаться правил безопасности и соблюдать схему установки.

  • В первую очередь соблюдайте требования относительно собственной безопасности. Работать необходимо в специальной форме и токонепроводимых рукавицах.
  • Рассчитывайте размещение конструкции так, чтобы она была достаточно отдалена от основного здания, которое подвергается заземлению.
  • Минимальная глубина нахождения электродов в грунте должна составлять не менее полуметра.
  • Соблюдайте нужную схему для устройства. Лучше если ваш контур будет треугольной или квадратной формы. Считается, что с такой геометрией ток уйдет в землю равномерно.

Начинающим электрикам! Обратите внимание, система заземления считается завершенной, если достигнута требуемая проводимость.

Также стоит учитывать плотность грунта, если она слишком маленькая и очевидна рыхлость структуры, предпринимают процедуру ввертывания электродов. Для этой операции нужно использовать специальные инструменты, традиционными принадлежностями тут не обойтись. Для любого вида заземления существуют рациональные технологии.

 

Вас могут заинтересовать:

prokommunikacii.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта