Eng Ru
Отправить письмо

Есть ли у неполярного конденсатора «полярность»? Конденсатор неполярный


Неполярные конденсаторы, теория и примеры

Определение и общие понятия о неполярных конденсаторах

Толщина диэлектрика, как правило, много меньше в сравнении с размерами обкладок. Конденсатор служит для того, чтобы накапливать заряд (и соответственно энергию электрического поля) и отдавать его. Основными характеристиками конденсатора являются: электрическая емкость (C) и пробивное напряжение (U).

Основу устройства конденсаторов составляет то, что электрическая емкость проводника увеличивается, если к нему приближают другое тело. Это объясняется тем, что под воздействием электрического поля заряженного проводника, на приближенном к нему теле, возникают заряды. Если вторым телом является проводник, то это индуцированные заряды, если тело состоит из диэлектрика, то это связанные заряды. Заряды, равные по величине и противоположные по знаку расположены, при этом, ближе к первому проводнику, чем одноименные. Значит, они оказывают большее воздействие на потенциал первого проводника. Так, при приближении к проводнику, несущему заряд, второго тела, величина потенциала проводника уменьшается. В соответствии с выражением:

    \[C=\frac{q}{\varphi} \qquad (1) \]

это значит, что емкость увеличивается.

Для минимизации влияния внешних тел на емкость конденсатора, его обкладки изготавливают такой формы и располагают так по отношению друг к другу, чтобы поле, которое создают заряды, было локализовано внутри конденсатора. Такому условию удовлетворяют, например, две плоские пластины, разделенные тонким слоем диэлектрика, два соосных цилиндра, две концентрические сферы. По форме обкладок конденсаторы разделяют соответственно: плоские; цилиндрические; сферические.

Так как поле конденсатора заключено, в основном, между его обкладками, то линии электрического смещения начинаются на одной из его обкладок и заканчиваются на другой. При этом сторонние заряды, которые появляются на обкладках, равны по величине и противоположны по знаку.

Конденсаторы являются распространенным элементом электронных схем. Этот элемент может проводить переменный ток и не проводит постоянного тока.

Конденсаторы могут иметь постоянную и переменную емкость, в зависимости от их конструкции. Конденсаторы постоянной емкости делят на полярные и неполярные.

Полярные конденсаторы, к ним относят электролитические конденсаторы, имеют положительный и отрицательный электроды. Для них важно как они включены в цепь. Не соблюдение полярности при включении в состав схемы полярного конденсатора ведет к его выходу из строя. Конденсатор электролитического типа соединяет в себе функции пассивного и полупроводникового элемента.

Неполярные конденсаторы, (или иногда их называют обычными) являются пассивными устройствами, которые служат для накопления заряда, для них не существует ни какой разницы, каким концом элемент включается в электрическую цепь.

Формулы для вычисления емкости конденсатора

Емкость любого конденсатора можно вычислить, используя выражение:

    \[C=\frac{q}{{\varphi}_1-{\varphi}_2}=\frac{q}{U} \qquad (2) \]

где {\varphi}_1-{\varphi}_2 – разность потенциалов обкладок конденсатора.

Емкость плоского конденсатора находят как:

    \[C=\frac{\varepsilon {\varepsilon}_0S}{d} \qquad (3) \]

где \sigma =\frac{q}{S}— плотность распределения заряда по поверхности пластины; \varepsilon – диэлектрическая проницаемость вещества, которое находится между пластинами конденсатора; S – площадь каждой (или меньшей) пластины; d – расстояние между пластинами. Формула (3) хорошо соответствует реальности, если расстояние между пластинами много меньше, чем их размеры.

Емкость цилиндрического конденсатора:

    \[C=\frac{2\pi \varepsilon {\varepsilon}_0l}{ln\left(\frac{R_2}{R_1}\right)} \qquad (4) \]

где l – высота цилиндров; R_2 – радиус внешнего цилиндра; R_1 – радиус внутреннего цилиндра. По формуле (5) вычисляют емкость коаксиального кабеля.

Емкость сферического конденсатора вычисляют при помощи выражения:

    \[C=\frac{4\pi \varepsilon {\varepsilon}_0R_1R_2}{R_2-R_1} \qquad (5) \]

где R_1{;\ R}_2 – радиусы обкладок конденсатора.

Емкость в Международной системе единиц (СИ) измеряется в фарадах (Ф).

Примеры решения задач

ru.solverbook.com

Урок 2.3 - Конденсаторы

Конденсатор

Конденсатор встречается в наборах Мастер Кит (да и вообще в электронных устройствах) почти так же часто, как и резистор. Поэтому важно хотя бы в общих чертах представлять его основные характеристики и принцип работы.

Принцип работы конденсатора

В простейшем варианте конструкция состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок. Чем больше отношение площади пластин к толщине диэлектрика – тем выше ёмкость конденсатора. Чтобы избежать физического увеличения размеров конденсатора до огромных размеров, конденсаторы изготавливают многослойными: например, сворачивают ленты пластин и диэлектриков в рулон. Так как любой конденсатор имеет диэлектрик, то он не способен проводить постоянный ток, но он может сохранять электрический заряд, приложенный к его обкладкам, и в нужный момент отдавать его. Это важное свойство

Давайте договоримся: радиодеталь мы называем конденсатором, а его физическую величину – ёмкостью. То есть правильно сказать так: «конденсатор имеет ёмкость 1 мкФ», но некорректно сказать: «замени на плате вон ту ёмкость». Вас, конечно, поймут, но лучше соблюдать «правила хорошего тона».

 

Электрическая ёмкость конденсатора – это главный его параметрЧем больше ёмкость конденсатора, тем больший заряд он может сохранить. Электрическая ёмкость конденсатора измеряется в Фарадах, обозначается F. 1 Фарад - очень большая ёмкость (земной шар имеет ёмкость менее 1Ф), поэтому для обозначения ёмкости в радиолюбительской практике используются следующие основные размерные величины - префиксы: µ (микро), n (нано) и p (пико):• 1 микроФарад - 10-6 (одна миллионная часть), т.е. 1000000µF = 1F• 1 наноФарад - 10-9 (одна миллиардная часть), т.е. 1000nF = 1µF• p (пико) - 10-12 (одна триллионная часть), т.е. 1000pF = 1nF

Как и Ом, Фарад – это фамилия физика. Поэтому, как культурные люди, пишем прописную букву «Ф»: 10 пФ, 33 нФ, 470 мкФ.

 

Номинальное напряжение конденсатораРасстояние между пластинами конденсатора (особенно конденсатора большой ёмкости) очень мало, и достигает единиц микрометра. Если приложить к обкладкам конденсатора слишком высокое напряжение, слой диэлектрика может быть нарушен. Поэтому каждый конденсатор имеет такой параметр, как номинальное напряжение. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Но лучше, когда номинальное напряжение конденсатора несколько выше напряжения в схеме. То есть, например, в схеме с напряжением 16В могут работать конденсаторы с номинальным напряжением 16В (в крайнем случае), 25В, 50В и выше. Но нельзя ставить в эту схему конденсатор с номинальным напряжением 10В. Конденсатор может выйти из строя, причём часто это происходит с неприятным хлопком и выбросом едкого дыма. Как правило, в радиолюбительских конструкциях для начинающих не используется напряжение питания выше 12В, а современные конденсаторы чаще всего имеют номинальное напряжение 16В и выше. Но помнить о номинальном напряжении конденсатора очень важно.

 

Типы конденсаторовО разнообразных конденсаторах можно написать много томов. Впрочем, это уже сделали некоторые другие авторы, поэтому я расскажу только самое необходимое: конденсаторы бывают неполярные и полярные (электролитические).

Неполярные конденсаторыНеполярные конденсаторы (в зависимости от типа диэлектрика подразделяются на бумажные, керамические, слюдяные…) могут устанавливаться в схему как угодно – в этом они похожи на резисторы.Как правило, неполярные конденсаторы имеют относительно небольшую ёмкость: до 1 мкФ.

 

Маркировка неполярных конденсаторовНа корпус конденсатора нанесён код из трёх цифр. Первые две цифры определяют значение ёмкости в пикофарадах (пФ), а третья – количество нулей. Так, на изображённом ниже рисунке на конденсатор нанесён код 103. Определим его ёмкость:10 пФ + (3 нуля) = 10000 пФ = 10 нФ = 0,01 мкФ.

Конденсаторы ёмкостью до 10 пФ маркируются по-особенному: символ «R» в их кодировке обозначает запятую. Теперь Вы можете определить ёмкость любого конденсатора. Приведённая ниже табличка поможет Вам проверить себя.

 

Код

Номинал

Код

Номинал

Код

Номинал

1R0

1 пФ

101

100 пФ

332

3.3 нФ

2R2

2.2 пФ

121

120 пФ

362

3.6 нФ

3R3

3.3 пФ

151

150 пФ

472

4.7 нФ

4R7

4.7 пФ

181

180 пФ

562

5.6 нФ

5R1

5.1 пФ

201

200 пФ

682

6.8 нФ

5R6

5.6 пФ

221

220 пФ

752

7.5 нФ

6R8

6.8 пФ

241

240 пФ

822

8.2 нФ

7R5

7.5 пФ

271

270 пФ

912

9.1 нФ

8R2

8.2 пФ

301

300 пФ

103

10 нФ

100

10 пФ

331

330 пФ

153

15 нФ

120

12 пФ

361

360 пФ

223

22 нФ

150

15 пФ

391

390 пФ

333

33 нФ

160

16 пФ

431

430 пФ

473

47 нФ

180

18 пФ

471

470 пФ

683

68 нФ

200

20 пФ

511

510 пФ

104

0.1 мкФ

220

22 пФ

561

560 пФ

154

0.15 мкФ

240

24 пФ

621

620 пФ

224

0.22 мкФ

270

27 пФ

681

680 пФ

334

0.33 мкФ

300

30 пФ

751

750 пФ

474

0.47 мкФ

330

33 пФ

821

820 пФ

684

0.68 мкФ

360

36 пФ

911

910 пФ

105

1 мкФ

390

39 пФ

102

1 нФ

155

1.5 мкФ

430

43 пФ

122

1.2 нФ

225

2.2 мкФ

470

47 пФ

132

1.3 нФ

475

4.7 мкФ

510

51 пФ

152

1.5 нФ

106

10 мкФ

560

56 пФ

182

1.8 нФ

 

 

680

68 пФ

202

2 нФ

 

 

750

75 пФ

222

2.2 нФ

 

 

820

82 пФ

272

2.7 нФ

 

 

910

91 пФ

302

3 нФ

 

 

Как правило, в радиолюбительских конструкциях допустима замена некоторых конденсаторов на близкие по номиналу. Например, вместо конденсатора 15 нФ набор может комплектоваться конденсатором 10 нФ или 22 нФ, и это не отразится на работе готовой конструкции. Керамические конденсаторы не имеют полярности и могут устанавливаться в любом положении выводов.Некоторые мультиметры (кроме самых бюджетных) имеют функцию измерения ёмкости конденсаторов, и Вы можете воспользоваться этим способом.

 

Полярные (электролитические) конденсаторыЕсть два способа увеличения ёмкости конденсатора: либо увеличивать размер его пластин, либо уменьшать толщину диэлектрика. Чтобы минимизировать толщину диэлектрика, в конденсаторах большой ёмкости (выше нескольких микрофарад) применяется специальный диэлектрик в виде оксидной плёнки. Этот диэлектрик нормально работает только при условии правильно приложенного напряжения на обкладках конденсатора. Если перепутать полярность напряжения, электролитический конденсатор может выйти из строя. Метка полярности всегда маркируется на корпусе конденсатора. Это может быть либо значок «+», но чаще всего в современных конденсаторах полосой на корпусе маркируется вывод «минус». Другой, вспомогательный способ определения полярности: плюсовой вывод конденсатора длиннее, но ориентироваться на этот признак можно только до того, как выводы радиодетали обрезаны. На печатной плате также присутствует метка полярности (как правило, значок «+»). Поэтому при установке электролитического конденсатора обязательно совмещайте метки полярности и на детали, и на печатной плате. Как правило, в радиолюбительских конструкциях допустима замена некоторых конденсаторов на близкие по номиналу. Также допустима замена конденсатора на аналогичный с бОльшим значением допустимого рабочего напряжения. Например, вместо конденсатора 330 мкФ 25В набор можно применить конденсатор 470 мкФ 50В, и это не отразится на работе готовой конструкции.

Внешний вид электролитического конденсатора (правильно установленный на плату конденсатор)

 

Скачать урок в формате PDF

masterkit.ru

Неполярный конденсатор - Большая Энциклопедия Нефти и Газа, статья, страница 1

Неполярный конденсатор

Cтраница 1

Конструктивно неполярный конденсатор отличается тем, что должен иметь во всех случаях два изолированных вывода.  [1]

Электролитические танталовые неполярные конденсаторы ЭТН имеют такое же устройство и характеристики, как и ЭТ. Они предназначены для работы в малогабаритной аппаратуре в условиях тропического климата.  [2]

На неполярные конденсаторы это ограничение не распространяется.  [3]

Емкость неполярного конденсатора равна емкости двух последовательно соединенных оксидных слоев. Однако от обычной схемы последовательного соединения такой конденсатор отличается тем, что каждый оксидный слой при соответствующем включении испытывает действие полного напряжения.  [5]

При изготовлении неполярных конденсаторов каждый анод рассчитывают на полное рабочее напряжение, так как при любой полярности поданного на конденсатор напряжения один из его анодов находится при полном напряжении, поскольку сопротивление оксидного слоя на втором аноде при этом резко снижено. Собранный конденсатор должен проходить вторичную формовку дважды в двух противоположных направлениях, чтобы обеспечить заформовку обоих анодов. В остальном изготовление неполярных конденсаторов, в основном, подобно изготовлению обычных полярных сухих конденсаторов.  [6]

Вторичная формовка неполярных конденсаторов выполняется в том же режиме, что и для полярных конденсаторов, с той разницей, что она производится последовательно для каждой обкладки конденсатора, вследствие чего требует в два раза больше времени.  [7]

К ним относятся жидкостные и сухие полярные и неполярные конденсаторы.  [8]

В первом случае необходимо применение неполярного конденсатора типа МБГО или К50 - 19, во втором случае используют обычные электролитические конденсаторы. Применяемые во второй схеме оптроны должны быть рассчитаны на полное напряжение ( 300 - 350 В) в закрытом состоянии.  [9]

Электролитические конденсаторы, устроенные по принципу неполярных конденсаторов, могут быть использованы для периодических непродолжительных включений в цепь переменного тока.  [11]

Для всех схем включения мультивибратора CD4047 следует применять неполярные конденсаторы с малыми токами утечки. Сопротивления резисторов выбираются в пределах 10кОм RT 1 МОм. Для ииП5 В - эту длительность следует увеличить до 1300 не.  [13]

Поскольку измерения по этому методу производятся на переменном токе, он пригоден для неполярных конденсаторов и сухих алюминиевых и танталовых конденсаторов с катодами, на которых имеется оксидный слой, запирающий в отрицательный полупериод напряжение, при котором производится измерение.  [15]

Страницы:      1    2    3

www.ngpedia.ru

Неполярный электролитический конденсатор - Большая Энциклопедия Нефти и Газа, статья, страница 1

Неполярный электролитический конденсатор

Cтраница 1

Неполярные электролитические конденсаторы могут находить себе применение в аппаратуре, рассчитанной на питание от сети постоянного тока, где легко может иметь место перемена полярности при включении штепсельной вилки.  [1]

Сухие неполярные электролитические конденсаторы имеют две анодные фольги, заформованные в одном электролите при одинаковом напряжении. Технология изготовления таких конденсаторов ничем не отличается от изготовления полярных конденсаторов. Некоторое изменение в технологии имеет место при намотке секций, так как вместо катодной фольги закладывается вторая анодная пластина.  [2]

Изготовляются также неполярные электролитические конденсаторы, в которых обе обкладки имеют оксидный слой.  [4]

Конденсаторы, собранные как неполярные электролитические конденсаторы, могут применяться и для включения в цепь переменного тока.  [5]

Наряду с полярными имеются сухие неполярные электролитические конденсаторы.  [6]

Промышленностью выпускается также несколько типов неполярных электролитических конденсаторов, у которых оксидный слой нанесен на обоих электродах.  [7]

Измерения емкости и тангенса угла потерь неполярных электролитических конденсаторов и электролитических конденсаторов переменного тока выполняются теми же методами, что и измерения полярных электролитических конденсаторов. При этих измерениях наложение на конденсаторы поляризующего напряжения постоянного тока не является обязательным.  [8]

Как было показано в четвертой главе, емкость неполярного электролитического конденсатора при одинаковой площади обкладок в два раза меньше емкости обычного полярного электролитического конденсатора.  [9]

Наряду с обычными, полярными, конденсаторами могут также изготовляться неполярные электролитические конденсаторы, у которых вместо катода используется второй анод.  [10]

Полярность сигналов высокого уровня должна быть однозначной, или должны применяться неполярные электролитические конденсаторы.  [11]

Конденсаторы с такими обкладками не требуют соблюдения полярности при включении в электрическую цепь; соответственно этому они получили название неполярных электролитических конденсаторов.  [12]

Как будет показано ниже, возможно изготовление и н е п о-л я р н ы х электролитических конденсаторов, при включении которых в цепь постоянного тока соблюдение полярности не требуется. Изготовлению неполярного электролитического конденсатора, рассчитанного на длительную работу при переменном напряжении, препятствует большой tg 8, свойственный конденсаторам этого типа.  [13]

Таким образом, во внешнюю цепь может уходить только половина всего того заряда, который был связан на границах оксидного слоя, когда напряжение на конденсаторе имело максимальное значение. Это обстоятельство приводит к тому, что емкость неполярного электролитического конденсатора в два раза меньше, чем емкость полярного конденсатора, имеющего такую же поверхность анода, какую имеет каждая обкладка неполярного конденсатора.  [15]

Страницы:      1    2

www.ngpedia.ru

Конденсаторы

Конденсатор

 

Рисунок 22. Конденсаторы различных типов и марок

 

Рисунок 23. Условное обозначение конденсатора

 

 

Само название «конденсатор» означает «накопитель».

 

Что он накапливает? Конденсатор накапливает электрический заряд и хранит в себе некоторое время время (до нескольких десятков часов). В этом отношении конденсатор можно сравнить с аккумулятором — тот также сперва собирает заряд, а потом отдает его по мере надобности.

Рисунок 24. Заряд и разряд конденсатора

 

В аккумуляторе накопление энергии происходит за счет сложных химических реакций, а в конденсаторе ничего подобного нет. В прямом смысле, лучший конденсатор — это токопроводящие пластины в вакууме. Но поскольку добиться идеальной пустоты (вакуума) сложно, самым простым конденсатором является устройство, состоящее из двух металлических пластин и воздушного промежутка между ними. Если пластины подключить к источнику питания, конденсатор накопит заряд. Затем, если вместо источника подсоединить, например, электрическую лампу, то она какое-то время будет светиться за счет запасенного в конденсаторе электричества. В настоящее время вместо воздуха в конденсаторах используют твердые диэлектрики (вещества, не проводящие электрический ток).

Рисунок 25. Устройство конденсатора

 

Отметим одно из важных свойств конденсатора — он не пропускает через себя постоянный ток. Переменный ток условно способен проходить через конденсатор.

 

Почему так происходит? Попробуем разобраться.

 

При включении разряженного конденсатора в электрическую цепь постоянного тока, он сразу же начнет заряжаться. При этом в цепи потечет ток, носители заряда будут скапливаться на пластинах конденсатора. По мере заряда частицам на обкладках становится «тесно», количество частиц, дополнительно попадающих на обкладки, уменьшается. Следовательно, ток в цепи также уменьшается. Как только «все места» на обкладках будут «заняты», ток прекратится.

 

Этот процесс можно сравнить с заполнением пустого автобуса на конечной остановке — как только открываются двери, внутрь врывается толпа пассажиров. Когда все сидячие и стоячие (и висячие) места заполнятся, внутрь не проникнет больше ни один пассажир, хотя на остановке их еще осталось достаточно много. Так же и в нашей цепи — несмотря на то, что цепь подключена к источнику, тока в ней после заряда конденсатора не будет.

 

Рисунок 26. Конденсатор и постоянный ток

 

В рассматриваемой цепи течет переменный ток, меняющий направление. В процессе заряда конденсатора в определенный момент направление тока меняется и начинается разряд конденсатора, а затем — его заряд, но уже противоположной полярности. Такие колебания будут происходить до тех пор, пока в цепи будет работать источник переменного тока. Таким образом, в каждый момент времени в цепи с переменным током и конденсатором постоянно наблюдается движение электронов, то есть течет ток.

 

Рисунок 27. Конденсатор и переменный ток

 

Это свойство конденсатора позволяет использовать его, например, для отделения постоянной составляющей электрического тока от переменной.

 

Основная характеристика конденсатора — емкость. Как и в случае с любой другой емкостью (например, канистрой), емкость конденсатора можно представить в виде его «вместимости», то есть: чем больше эта емкость, тем больше энергии сможет запасти в себе конденсатор.

 

Измеряется емкость в Фарадах, однако один Фарад — это очень большая емкость, поэтому чаще используют производные величины.

 

 Единицы емкости:

  • 1 мкФ (один микрофарад, uF) = 0,000 001 Ф (одна миллионная фарада)
  • 1 нФ (один нанофарад, nF) = 0,001 мкФ (одна тысячная микрофарада)
  • 1 пФ (один пикофарад, pF) = 0,000 001 мкФ (одна миллионная микрофарада)

В автомобильной аудиотехнике применяются специальные конденсаторы с емкостью в единицы (до 15) фарад, позволяющие компенсировать провалы напряжения питания на большой громкости.

 

Конденсаторы бывают полярными и неполярными. Полярные требуют соблюдения полярности подключения: чтобы вывод, отмеченный плюсом, был подключен именно к плюсу, а не к минусу. Что произойдет, если этого не соблюсти? Конденсатор выйдет из строя. Причем конденсатор «заявит» об этом громким хлопком и разбрызгиванием своего содержимого во все стороны. Поэтому старайтесь соблюдать маркировку на корпусе конденсатора и печатной плате (на всех платах в местах установки полярных конденсаторов нанесена полярность его подключения).

 

Рисунок 28. Полярный конденсатор

 

Неполярный конденсатор избавлен от этого недостатка, его можно включать в цепь, не задумываясь о соблюдении полярности.

 

Рисунок 29. Неполярные конденсаторы

 

Но отказаться от полярных конденсаторов полностью невозможно, так как все конденсаторы большой емкости — исключительно полярные.

 

Второй важный параметр конденсатора — рабочее напряжение. Поскольку между обкладками (пластинами) конденсатора находится тонкий слой диэлектрика, то превышение указанного напряжения может привести к электрическому пробою (короткому замыканию) внутри конденсатора и выходу его из строя.

 

 Неправильно выбранное рабочее напряжение конденсатора приводит к выходу его из строя или даже взрыву!

 

Рисунок 30. Взорвавшийся конденсатор

 

При выборе номинального напряжения конденсатора следует делать некоторый запас, то есть для цепи 12 В подойдет конденсатор, на котором написано, например, 16 В. Для этой же цепи можно взять конденсатор и на 25 В, но он, как правило, дороже и крупнее

 

На полярных конденсаторах большой емкости (>10 000 мкФ), непосредственно на корпусе указываются напряжение и полярность подключения, на неполярных — как правило, только емкость.

 

Конденсаторы в электронике используются как составная часть электрических фильтров, резонансных контуров и разделительных элементов в усилительных каскадах. Вместе с сопротивлением они используются как времязадающая цепь в генераторах и таймерах.

 

При монтаже автомобильных охранных систем конденсатор может использоваться, например, как замедлитель срабатывания или отпускания реле, чтобы реализовать небольшую задержку срабатывания. Или при подключении цепей контроля запуска двигателя для отсеивания постоянной составляющей тока от переменной.

 

Рисунок 31. Схема-подсказка "Конденсатор"

instalator.ru

Есть ли у неполярного конденсатора «полярность»? » Журнал практической электроники Датагор (Datagor Practical Electronics Magazine)

Есть ли у неполярного конденсатора «полярность»?Конденсатор — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.

На сайте Jimmy's Junkyard я нашел статью об определении у конденсаторов внешнего и внутреннего выводов обкладок. Я решил опробовать данный метод на конденсаторах которые есть у меня. Я проверял данный метод на конденсаторах серии: К73-17, Epcos, Jancen M-Cap, Mundorf и мое мнение, что этот метод определения "полюса" конденсатора прекрасно работает.

Идея мне понравилась и я решил перевести данную статью для общественности. Думаю, такой простой тест пригодится для тех, кто строит аудиосистемы высокого разрешения.

Давно известно, что у конденсаторов есть внешняя и внутренняя обкладки и эти самые обкладки должны отличаться, ведь большинство из них производится по схожей технологии – наматыванием бумаги с нанесенным на нее проводящим слоем (серебряная, золотая или медная фольга), а у намотки имеется начало (внутренняя обкладка) и конец (соответственно внешняя). Хотя внутреннюю и внешнюю обкладки конденсатора можно подключать как к положительному, так и к отрицательному потенциалу, по некоей причине предпочтительно подключать к внешней обкладке отрицательный потенциал (или вход в случае разделительного конденсатора), а к внутренней - положительный. Интересно, почему? Да потому что внешняя обкладка будет ловить помехи из внешней среды.

Некоторые известные производители конденсаторов, такие как Audio Note, Jensen, Auricap, Hovland, VCap и др. помечают вывод внешней обкладки другим цветом либо черной полосой или точкой. Другие, такие как Mundorf не особенно заморачиваются на такие мелочи. Поэтому придётся определить это самому. Следует особо отметить Ultra-High-End конденсаторы типа Duelund, которые производятся по спецтехнологии из прессованной фольги и поэтому вообще не имеют какой-либо полярности.

Определить же "отрицательный" вывод конденсатора можно при помощи осциллографа. Нужно просто протестировать оба вывода – тот на котором больше наведенных помех (например при прикосновении к корпусу конденсатора или при поднесении высоковольтного кабеля), тот и является "отрицательным" т.е. внешней обкладкой.

Ниже приведены несколько примеров таких измерений.

Маслонаполненный конденсатор Audio Note из майларовой фольги. Имеет пометку на корпусе в виде черной линии, обозначающую отрицательный вывод (вход). Можно увидеть, что при прикосновении положительным проводом щупа осциллографа к этому выводу шум довольно большой.При прикосновении положительным проводом щупа осциллографа к другому выводу шум сильно уменьшается. Конденсатор Mundorf Supreme не имеет обозначения отрицательного вывода, поэтому его придется определить самому.Для уверенности, смотрим что при противоположном подключении шум уменьшается. У конденсаторов Auricap черная нога - "отрицательный" вывод от внешней обкладки.Красный вывод Auricap - от внутренней обкладки

Конденсатор Jensen Paper Tube (из медной фольги) имеет такое же как у Audio Note обозначение отрицательного вывода в виде черной полосы. Такой простой тест можно устраивать любым конденсаторам, даже простым советским К73-17. Данный тест особенно пригодится для любителей ламповой схемотехнике, особенно такая проверка актуальна для конденсаторов находящихся в непосредственной близости к источникам электрических помех, таких как силовые трансформаторы и прохождение силовых токоведущих проводов в непосредственной близости к звуковым конденсаторам.

Алексей (Alexhase)

Тверь

О себе автор ничего не сообщил.

 

datagor.ru

Последовательное соединение конденсаторов: практические решения

Последовательное соединение конденсаторов обычно используют в двух случаях: чтобы получить конденсатор с высоким допустимым напряжением или чтобы получить конденсатор с нужной емкостью.

Подбираем сопротивление конденсатора

При подборе емкости конденсатора, конечно, проще использовать параллельное соединение, так как емкости всех конденсаторов просто суммируются. Но если нужно получить значение емкости ниже чем у любых имеющихся конденсаторов, то последовательное соединение нас выручит. Удивительно но формула расчета емкостей конденсаторов при последовательном включении, очень похожа на формулу для расчета параллельного сопротивления резисторов.Cs=C1*C2/(C1+C2). Да, неудобная формула, проще воспользоваться калькулятором.

Высоковольтный конденсатор

Если необходимо получить конденсатор с высоким напряжением, можно использовать два или более конденсаторов на низкое напряжение. Объединять лучше всего конденсаторы с максимально похожими характеристиками. Так как при последовательном включении конденсаторы заряжаются и разряжаются одним и тем же током, то из-за отличии в значениях емкости, конденсаторы могут заряжаться до разных значений напряжения и чем больше разница в емкостях, тем будет больше разбаланс напряжений.Еще проблемы при таком включении создает разброс токов утечки. Чем больше ток утечки конденсатора, тем быстрее он будет разряжатся, при этом конденсаторе с меньшим током утечки напряжение будет расти и со временем, на первом конденсаторе напряжение станет равным нулю, а на втором полным напряжением. Получиться, что работает только один конденсатор.Чтобы сбалансировать напряжение на конденсаторах, нужно параллельно каждому конденсатору в цепочке подключить резистор. Сопротивление резистора рассчитывается, таким образом чтобы через резистор тек ток раз в 10 больше чем разница между токами утечек последовательно включенных конденсаторов.

Последовательное соединение конденсаторов

Из двух полярных конденсаторов один неполярный

Бывают ситуации, когда нужен неполярный конденсатор, а в наличии только полярные. Тогда можно взять два полярных конденсатора с емкостью в два раза выше, чем должен получиться требуемый конденсатор и объединить их встречно-последовательно, то есть между собой плюс с плюсом или минус с минусом. А оставшиеся два вывода запаять в схему.

Униполярный конденсатор

hardelectronics.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта