Eng Ru
Отправить письмо

Замыкания на землю в линиях электропередачи 6-35 кВ Особенности возникновения и приборы защиты. Однофазное замыкание на землю в сетях 6 кв


Однофазные замыкания на землю в распределительных сетях 6-35 кВ – что это?

 

Суть процесса электроснабжения заключается в доставке электроэнергии от места, где она производится (электрические станции) до места ее потребления (электроприемники). Транспорт электроэнергии осуществляется по электрическим сетям, включающим в себя линии электропередачи, силовые трансформаторы, распределительные устройства и другое вспомогательное оборудование. Сама по себе передача электроэнергии производится по специальным трехфазным электрическим цепям высокого напряжения, чем выше уровень напряжения, тем с меньшими потерями мощности происходит доставка электроэнергии по цепи, но при этом повышение напряжения увеличивает стоимость самой электроустановки, таким образом, выбор оптимального уровня напряжения электроустановки – это сложная технико-экономическая задача. Как правило, распределение электроэнергии к потребителям осуществляется на классе напряжения 6-35 кВ, но иногда можно встретить подстанции глубокого ввода, когда распределение электроэнергии к очень мощным электроприемникам осуществляется на напряжении 110-220 кВ. 

Одна из особенностей транспорта электроэнергии заключается в наличии нейтрального провода в схеме, который представляет из себя общую точку источников питания трехфазной электрической системы, также называемой нейтралью.

Одним из наиболее частых видов повреждений на линиях электропередачи является однофазное замыкание на землю - это вид повреждения, когда одна из фаз трехфазной системы замыкается на землю или на элемент электрически связанный с землей. Процессы, протекающие в сети при возникновении такого замыкания, значительным образом зависят от режима работы нейтрали данной сети.

В сетях с изолированной нейтралью ток однофазного замыкания на землю замыкается через емкости неповрежденных фаз. Его значение невелико и определяется суммарной емкостью неповрежденных фаз. Соотношения линейных напряжений при возникновении однофазного замыкания на землю не изменяются, что позволяет эксплуатировать сеть, не отключая повреждения данного вида незамедлительно. Однако, однофазное замыкание на землю представляет значительную опасность для оборудования, вследствие того, что уравнивание потенциала поврежденной фазы и земли приводит к увеличению напряжения между неповрежденными фазами и землей до значения порядка номинального линейного напряжения сети. Изоляция неповрежденных фаз в результате воздействия повышенного напряжения подвержена ускоренному старению, что в конечном счете может привести к замыканию на землю других фаз и возникновению двойного замыкания на землю, являющегося коротким замыканием и требующего немедленного отключения поврежденного участка сети.

Кроме того, ток однофазного замыкания, растекаясь по земле вблизи места замыкания на землю, представляет опасность для жизни людей и животных.

В сетях с заземленной нейтралью однофазное замыкание на землю является коротким замыканием. Ток повреждения в данном случае замыкается через заземленные нейтрали первичного оборудования и имеет значительную величину. Такое повреждение требует немедленного обесточивания поврежденного участка.

Учитывая данную особенность, а также сложность реализации изоляции между фазными проводами и землей для различных классов напряжения (чем выше класс напряжения, тем сложнее эту изоляцию выполнить), то выбор оптимального типа нейтрали также является сложной технико-экономической задачей.

70-90% электричеcких повреждений

приходится на ОЗЗ1

Причины однофазных замыканий на землю могут быть весьма различны, но все они возникают из-за нарушения изоляции оборудования электроустановок, особенно на кабельных или воздушных линиях электропередачи. Нарушение изоляции может быть по причине ее старения, а также вследствие механических воздействий на электроустановку, чаще это повреждение кабеля при проведении земляных работ или падение ветки дерева на провод воздушной линии и т.д.

В России данная задача нашла решение в таком виде, что распределительные сети уровнем 6-35 кВ эксплуатируются в изолированном от земли режиме нейтрали источников питания, а сети более высокого уровня напряжения эксплуатируются в режиме, когда нейтраль напрямую связана с землей – глухозаземленный и эффективный режим нейтрали.

 

1. Шуин В.А., Гусенков А.В. Защиты от замыканий на землю в электрических сетях 6-10 кВ. М.:НТФ «Энергопрогресс». //Приложение к журналу, «Энергетик», выпуск 11(35) 2001, 102 с.

Последствия ОЗЗВиды защит от однофазных замыканий на землю (ОЗЗ)

www.i-mt.net

11.2. Замыкание фазы на землю в сетях с изолированной нейтралью и с компенсацией емкостных токов

11.2. Замыкание фазы на землю в сетях с изолированной нейтралью и с компенсацией емкостных токов

Замыкание на землю — это замыкание, обусловленное соединением проводника с землей или уменьшением сопротивления его изоляции по отношению к земле ниже определенной величины (СТ МЭК 50(151)—78).

Компенсация емкостного тока замыкания на землю в сетях 6-35 кВ применяется для уменьшения тока замыкания на землю, снижения скорости восстановления напряжения на поврежденной фазе после гашения заземляющей дуги, уменьшения перенапряжений при повторных зажиганиях дуги и создания условий для ее самопогасания.

Из рис. 11.1, а видно, что при замыкании фазы на землю обмотка ТН поврежденной фазы оказывается замкнутой накоротко и показания ее вольтметра будут равны нулю. Две другие фазы будут находиться под линейным напряжением, что зафиксируют вольтметры.

В точке замыкания фазы (например, фазы С) на землю проходит ток, равный геометрической сумме емкостных токов неповрежденных фаз, то есть

Чем протяженнее сеть, тем больше ее емкость и, следовательно, тем больше ток замыкания на землю, что вытекает из формулы (11.1).

Опасность замыкания фазы на землю состоит в том, что в месте повреждения, как правило, возникает перемежающаяся заземляющая дуга, длительное горение которой при большом емкостном токе приводит к значительному тепловому эффекту с возможным возникновением междуфазных КЗ, а повышение напряжения двух фаз до линейного значения может привести к пробою дефектной изоляции.

В соответствии с требованиями ПТЭ, токи замыкания на землю не должны превышать следующих значений:

В соответствии с требованиями ПУЭ и Типовой инструкцией по компенсации емкостного тока, компенсация должна применяться при следующих значениях емкостного тока замыкания на землю в нормальных режимах работы сети:

в воздушных сетях 6-20 кВ на железобетонных или металлических опорах и во всех сетях 35 кВ — при токе более 10 А;

в воздушных сетях, не имеющих железобетонных или металлических опор:

при напряжении 6 кВ — при токе более 30 А;

при напряжении 10 кВ — более 20 А;

при напряжении 15–20 кВ — более 15 А;

в схемах генераторного напряжения 6-20 кВ блоков генератор — трансформатор — более 5 А.

Компенсацию допускается применять также в воздушных сетях 6-10 кВ при емкостном токе менее 10 А.

Во избежание превышения указанных значений токов в нейтраль трансформатора включается дугогасящий реактор (рис. 11.1, б), который уменьшает (компенсирует) емкостной ток через место повреждения. При компенсации емкостных токов ВЛ и КЛ могут некоторое время работать с замыканием фазы на землю.

При токе реактора Ip равном емкостному току Ic, имеет место полная компенсация емкостного тока, то есть Iр = Iс = 0, и наступает резонанс токов.

Реактор можно настраивать на работу с недокомпенсацией или перекомпенсацией токов.

Настройка с недокомпенсацией применяется в КЛ и ВЛ, если аварийно возникшая несимметрия емкостей фаз не приводят к возникновению напряжения смещения нейтрали более 0,7 Uф.

При резонансной настройке ток замыкания на землю минимален и перенапряжения в сети не превышают 2,7 Uф. С точки зрения гашения дуги резонансная настройка является оптимальной.

В обычном режиме работы сети имеет место несимметрия напряжения, обычно не превышающая допустимое значение 1,5 %.

Следует иметь в виду, что при резонансной настройке напряжение смещения может достичь значений фазных напряжений, что приведет к искажению фазных напряжений и возможному появлению сигнала «земля в сети» при отсутствии замыкания фазы на землю. Расстройка дугогасящего реактора позволяет избежать точки резонанса, снизить напряжение смещения нейтрали и выровнять показания вольтметров.

При отсутствии замыкания на землю допускается смещение нейтрали не более 0,15Uф.

Ток дугогасящих реакторов регулируется ручным переключением ответвлений с отключением реактора от сети, изменением зазора в магнитной системе при помощи электродвигательного привода без отключения реактора от сети, изменением индуктивности реактора или подмагничиванием постоянным током без отключения реактора от сети.

Автоматизированная компенсированная сеть должна иметь:

дугогасящие реакторы с ручным переключением ответвлений;

подстроечные дугогасящие реакторы с плавным изменением тока компенсации без отключения реактора от сети;

дугогасящие реакторы с автоматическими регуляторами тока компенсации, включающиеся сразу после возникновения замыкания на землю и обеспечивающие резонансную настройку для погашения дуги в месте замыкания.

Перестройка дугогасящих реакторов производится по распоряжению диспетчера, который руководствуется таблицей настройки, составленной для конкретного участка сети на основании результатов измерений токов замыкания на землю, емкостных токов, токов компенсации и напряжений смещения нейтрали.

Дугогасящие реакторы устанавливаются на питающих сеть ПС и подключаются к нейтрали трансформатора через разъединители.

При соединении трансформатора по схеме «звезда — треугольник» реакторы подключают к нейтрали вспомогательных трансформаторов, в качестве которых используются трансформаторы собственных нужд.

Для перевода реактора с одного трансформатора на другой его сначала отключают разъединителем от нейтрали одного трансформатора, а затем подключают разъединителем к нейтрали другого.

О возникновении замыкания на землю персонал узнает по работе сигнальных устройств, а фаза, замкнувшая на землю, устанавливается по показаниям вольтметров контроля изоляции.

В сигнальном устройстве реле контроля изоляции подключается к выводам дополнительной вторичной обмотки ТН, соединенной по схеме разомкнутого треугольника. При нарушении изоляции фазы на землю на зажимах этой обмотки появляется напряжение нулевой последовательности 3U0, реле КV (рис. 11.1) срабатывает и подает сигнал.

В сетях с компенсацией емкостных токов схемы сигнализации и контроля работы дугогасящих реакторов подключаются к ТТ реактора или к его сигнальной обмотке. К этой же обмотке подключаются без предохранителей также лампы контроля отсутствия замыкания на землю.

По полученным сигналам на ПС нельзя сразу определить электрическую цепь, на которой произошло замыкание на землю, поскольку отходящие линии электрически связаны между собой на шинах. Для определения цепи, на которой произошло замыкание на землю, применяют избирательную сигнализацию поврежденных участков, основанную на использовании токов переходного процесса замыкания или токов высших гармоник, источником которых являются нелинейные цепи.

Широкое распространение на ПС, питающих кабельную сеть, получили устройства с разделительными фильтрами типов РФ и УСЗ, которые реагируют на высшие гармоники, содержащиеся в токе 3I0. Их уровень пропорционален емкостному току сети и в поврежденной линии выше, чем в токах нулевой последовательности неповрежденных линий. Данный фактор и является признаком повреждения на той или иной линии.

Стационарные устройства устанавливаются на щитах управления или в коридорах РУ и при помощи переключателей, кнопок или шаговых искателей при появлении в цепи замыкания на землю поочередно подключаются персоналом к ТТ нулевой последовательности, установленным на каждой КЛ.

Поврежденным считается присоединение, на котором при измерении стрелка прибора отклонится на большее число делений, чем при измерениях на других присоединениях.

Если устройства избирательной сигнализации на ПС отсутствуют или не дают желаемых результатов, отыскание поврежденного присоединения производится путем перевода отдельных присоединений с одной системы шин на другую, работающую без замыкания на землю, или путем деления электрической сети в заранее предусмотренных местах. Для отыскания повреждений также пользуются поочередным кратковременным отключением линий с включением их от АПВ или вручную.

Следует знать, что продолжительность непрерывной работы реакторов под током нормирована: от 2 до 8 ч. Поэтому если отыскание замыкания на землю затягивается, то персонал обязан контролировать температуру верхних слоев масла в баке реактора. Максимальное повышение температуры верхних слоев масла допускается до 100 °C.

Поделитесь на страничке

Следующая глава >

info.wikireading.ru

Большой ток замыкания на землю в сетях с изолированной нейтралью (Страница 1) — Спрашивайте

Может быть, если объект новый (на старом уж как-нибудь разобрались бы к этому времени). В этом случае (т.е. когда нейтраль не просто не изолирована, а глухо заземлена), как показывает опыт, источником тока замыкания на землю является трансформатор, нейтраль которого заземлена, именно его сопротивление оказывается решающим. Был опыт с реакторами (шунтирующими, по сути, такие ИРМ для бедных, которые включают на напряжение 35 кВ). Первоначально (по проекту ДВО ЭСП, ну, это примерно на рубеже 70-ых - 80-ых было) нейтраль реакторов была глухо заземлена (шиной, как положено).  К счастью (или несчастью, как посмотреть) работали эти реакторы отдельно от сети 35 кВ, включались каждый на третичную обмотку своего АТ 220/110/35 кВ. Сеть маленькая, первое замыкание на землю произошло спустя годы - с отключением АТ от дифзащиты. Регистраторов тогда никаких не было, но после второго случая задумались, а там подошли ПС с реакторами, включенными уже на  шинах 35 кВ, там замыканий побольше - взялись за голову. Написали в институт, те изменили решение - всё прошло. Лет примерно через 20 на БГЭС (15 лет прошло, можно уже рассказать?) ввели первые блоки, там ТСН 15,75/6 кВ. Замыкание на землю на токопроводе  - работа дифзащиты блока, отключение, скандал. Это один из первых шкафов ЭКРА для ГЭС, начало большой серии, крупный генератор (335 МВА), скандал большой. Приехала комиссия (ОДУ, РДУ), пошли прогуляться "на местности осмотреться", видят глухое заземление нейтрали ТСН. Немая сцена, потом речь возвратилась, сначала непечатная, конечно. Кинулись к монтажникам, только брать их за грудки, а прораб: "Всё по чертежу!". "Не может быть!". Оказалось, может (хотел смайлик поставить, да не стану). ЛГП имени Жука, раз уж "вечер воспоминаний". Нет, все хороши, что говорить, монтажники показывали чертёж электроцеху, те подтвердили - "делай по проекту". Проверить просто, сами понимаете - осмотром тр-ров ПС, и возможно, имеющихся там специальных ТСН для питания ЗРОМ или ДГК, может, решили заземлить без них?

www.rzia.ru

Замыкание фазы на землю в сетях с изолированной нейтралью и с компенсацией емкостных токов | Электрические подстанции

Замыкание на землю — это замыкание, обусловленное соединением проводника с землей или уменьшением сопротивления его изоляции по отношению к земле ниже определенной величины (СТ МЭК 50(151)—78).

Компенсация емкостного тока замыкания на землю в сетях 6-35 кВ применяется для уменьшения тока замыкания на землю, снижения скорости восстановления напряжения на поврежденной фазе после гашения заземляющей дуги, уменьшения перенапряжений при повторных зажиганиях дуги и создания условий для ее самопогасания.

Из 1, а видно, что при замыкании фазы на землю обмотка ТН поврежденной фазы оказывается замкнутой накоротко и показания ее вольтметра будут равны нулю. Две другие фазы будут находиться под линейным напряжением, что зафиксируют вольтметры.

В точке замыкания фазы (например, фазы С) на землю проходит ток, равный геометрической сумме емкостных токов неповрежденных фаз, то есть

11.2. Замыкание фазы на землю в сетях с изолированной нейтралью и с компенсацией емкостных токов

Чем протяженнее сеть, тем больше ее емкость и, следовательно, тем больше ток замыкания на землю, что вытекает из формулы (11.1).

Опасность замыкания фазы на землю состоит в том, что в месте повреждения, как правило, возникает перемежающаяся заземляющая дуга, длительное горение которой при большом емкостном токе приводит к значительному тепловому эффекту с возможным возникновением междуфазных КЗ, а повышение напряжения двух фаз до линейного значения может привести к пробою дефектной изоляции.

11.2. Замыкание фазы на землю в сетях с изолированной нейтралью и с компенсацией емкостных токов

В соответствии с требованиями ПТЭ, токи замыкания на землю не должны превышать следующих значений:

11.2. Замыкание фазы на землю в сетях с изолированной нейтралью и с компенсацией емкостных токов

В соответствии с требованиями ПУЭ и Типовой инструкцией по компенсации емкостного тока, компенсация должна применяться при следующих значениях емкостного тока замыкания на землю в нормальных режимах работы сети:

в воздушных сетях 6-20 кВ на железобетонных или металлических опорах и во всех сетях 35 кВ — при токе более 10 А;

в воздушных сетях, не имеющих железобетонных или металлических опор:

при напряжении 6 кВ — при токе более 30 А;

при напряжении 10 кВ — более 20 А;

при напряжении 15–20 кВ — более 15 А;

в схемах генераторного напряжения 6-20 кВ блоков генератор — трансформатор — более 5 А.

Компенсацию допускается применять также в воздушных сетях 6-10 кВ при емкостном токе менее 10 А.

Во избежание превышения указанных значений токов в нейтраль трансформатора включается дугогасящий реактор (1, б), который уменьшает (компенсирует) емкостной ток через место повреждения. При компенсации емкостных токов ВЛ и КЛ могут некоторое время работать с замыканием фазы на землю.

При токе реактора Ip равном емкостному току Ic, имеет место полная компенсация емкостного тока, то есть Iр = Iс = 0, и наступает резонанс токов.

Реактор можно настраивать на работу с недокомпенсацией или перекомпенсацией токов.

Настройка с недокомпенсацией применяется в КЛ и ВЛ, если аварийно возникшая несимметрия емкостей фаз не приводят к возникновению напряжения смещения нейтрали более 0,7 Uф.

При резонансной настройке ток замыкания на землю минимален и перенапряжения в сети не превышают 2,7 Uф. С точки зрения гашения дуги резонансная настройка является оптимальной.

В обычном режиме работы сети имеет место несимметрия напряжения, обычно не превышающая допустимое значение 1,5 %.

Следует иметь в виду, что при резонансной настройке напряжение смещения может достичь значений фазных напряжений, что приведет к искажению фазных напряжений и возможному появлению сигнала «земля в сети» при отсутствии замыкания фазы на землю. Расстройка дугогасящего реактора позволяет избежать точки резонанса, снизить напряжение смещения нейтрали и выровнять показания вольтметров.

При отсутствии замыкания на землю допускается смещение нейтрали не более 0,15Uф.

Ток дугогасящих реакторов регулируется ручным переключением ответвлений с отключением реактора от сети, изменением зазора в магнитной системе при помощи электродвигательного привода без отключения реактора от сети, изменением индуктивности реактора или подмагничиванием постоянным током без отключения реактора от сети.

Автоматизированная компенсированная сеть должна иметь:

дугогасящие реакторы с ручным переключением ответвлений;

подстроечные дугогасящие реакторы с плавным изменением тока компенсации без отключения реактора от сети;

дугогасящие реакторы с автоматическими регуляторами тока компенсации, включающиеся сразу после возникновения замыкания на землю и обеспечивающие резонансную настройку для погашения дуги в месте замыкания.

Перестройка дугогасящих реакторов производится по распоряжению диспетчера, который руководствуется таблицей настройки, составленной для конкретного участка сети на основании результатов измерений токов замыкания на землю, емкостных токов, токов компенсации и напряжений смещения нейтрали.

Дугогасящие реакторы устанавливаются на питающих сеть ПС и подключаются к нейтрали трансформатора через разъединители.

При соединении трансформатора по схеме «звезда — треугольник» реакторы подключают к нейтрали вспомогательных трансформаторов, в качестве которых используются трансформаторы собственных нужд.

Для перевода реактора с одного трансформатора на другой его сначала отключают разъединителем от нейтрали одного трансформатора, а затем подключают разъединителем к нейтрали другого.

О возникновении замыкания на землю персонал узнает по работе сигнальных устройств, а фаза, замкнувшая на землю, устанавливается по показаниям вольтметров контроля изоляции.

В сигнальном устройстве реле контроля изоляции подключается к выводам дополнительной вторичной обмотки ТН, соединенной по схеме разомкнутого треугольника. При нарушении изоляции фазы на землю на зажимах этой обмотки появляется напряжение нулевой последовательности 3U0, реле КV (1) срабатывает и подает сигнал.

В сетях с компенсацией емкостных токов схемы сигнализации и контроля работы дугогасящих реакторов подключаются к ТТ реактора или к его сигнальной обмотке. К этой же обмотке подключаются без предохранителей также лампы контроля отсутствия замыкания на землю.

По полученным сигналам на ПС нельзя сразу определить электрическую цепь, на которой произошло замыкание на землю, поскольку отходящие линии электрически связаны между собой на шинах. Для определения цепи, на которой произошло замыкание на землю, применяют избирательную сигнализацию поврежденных участков, основанную на использовании токов переходного процесса замыкания или токов высших гармоник, источником которых являются нелинейные цепи.

Широкое распространение на ПС, питающих кабельную сеть, получили устройства с разделительными фильтрами типов РФ и УСЗ, которые реагируют на высшие гармоники, содержащиеся в токе 3I0. Их уровень пропорционален емкостному току сети и в поврежденной линии выше, чем в токах нулевой последовательности неповрежденных линий. Данный фактор и является признаком повреждения на той или иной линии.

Стационарные устройства устанавливаются на щитах управления или в коридорах РУ и при помощи переключателей, кнопок или шаговых искателей при появлении в цепи замыкания на землю поочередно подключаются персоналом к ТТ нулевой последовательности, установленным на каждой КЛ.

Поврежденным считается присоединение, на котором при измерении стрелка прибора отклонится на большее число делений, чем при измерениях на других присоединениях.

Если устройства избирательной сигнализации на ПС отсутствуют или не дают желаемых результатов, отыскание поврежденного присоединения производится путем перевода отдельных присоединений с одной системы шин на другую, работающую без замыкания на землю, или путем деления электрической сети в заранее предусмотренных местах. Для отыскания повреждений также пользуются поочередным кратковременным отключением линий с включением их от АПВ или вручную.

Следует знать, что продолжительность непрерывной работы реакторов под током нормирована: от 2 до 8 ч. Поэтому если отыскание замыкания на землю затягивается, то персонал обязан контролировать температуру верхних слоев масла в баке реактора. Максимальное повышение температуры верхних слоев масла допускается до 100 °C.

energy-ua.com

Замыкания на землю в линиях электропередачи 6-35 кВ Особенности возникновения и приборы защиты - Документ

Часть 1

Замыкания на землю в линиях электропередачи 6-35 кВОсобенности возникновения и приборы защиты

Процессы, протекающие в сетях 6-35 кВ при однофазных замыканиях на землю, и способы защиты от ОЗЗ – этой теме посвящено довольно большое количество публикаций в специализированной литературе.Наш автор Алексей Иванович Шалин сегодня рассматривает различные виды повреждений, возникающих на воздушных и кабельных линиях электропередачи при однофазных замыканиях на землю, а также процессы, возникающие при этом в электрических сетях.

Как известно, характер процессов, протекающих в сети при однофазных замыканиях на землю (ОЗЗ), в большой степени зависит от режима заземления нейтрали. В настоящее время в России используются четыре способа заземления нейтрали в рассматриваемых сетях: изолированная, компенсированная, резистивно-заземленная и комбинированная

– с резистором и дугогасящим реактором в нейтрали.Эксплуатируемые в российских сетях с изолированной и компенсированной нейтралью защиты далеки от совершенства. Требуется разработка новых, более совершенных защит от ОЗЗ.Опыт работы показывает, что при сохранении традиционных способов заземления нейтрали существенного «прорыва» в этой области едва ли можно ожидать. Принципиально новые возможности появляются при заземлении нейтрали через резистор. При этом в некоторых случаях (при больших, порядка десятков ампер, емкостных токах сети) резистивное заземление совмещают с включением в нейтраль дугогасящего реактора LN (рис.1). Вид защиты от ОЗЗ безусловно должен выбираться с учетом режима заземления нейтрали. Желательно в процессе проектирования выбрать такую защиту, которую не придется заменять при дальнейшем развитии сети.

Устойчивым признаком поврежденного присоединения в соответствии с рис. 1 является протекание по нему активного тока заземляющего резистора RN.

ВИДЫ ПОВРЕЖДЕНИЙ ПРИ ОЗЗ

При ОЗЗ в резистивно-заземленных сетях возможны повреждения, которые с точки зрения защиты можно разделить на несколько основных категорий:

  • кратковременные пробои;

  • «металлические», бездуговые ОЗЗ;

  • ОЗЗ через большие переходные сопротивления;

  • дуговые ОЗЗ;

  • обрывы воздушных ЛЭП, не сопровождающиеся длительными ОЗЗ.

Кратковременные пробои

Большинству «устойчивых» ОЗЗ предшествуют кратковременные неустойчивые пробои изоляции длительностью от 1 до 10 мс, сопровождающиеся значительными по продолжительности бестоковыми паузами (от 1 до 17 минут). Время от первого кратковременного пробоя до возникновения устойчивого ОЗЗ составляет от 1 минуты до 10 суток и более.

Бездуговое ОЗЗ

Такое замыкание появляется при возникновении надежной гальванической связи поврежденной фазы с землей (например, с заземленным корпусом электроустановки). При этом напряжения и токи нулевой последовательности можно считать синусоидальными и максимальными по величине. С точки зрения защиты бездуговое ОЗЗ – самый простой режим функционирования.

ОЗЗ через большие переходные сопротивления

Связь фазы с землей через неметаллические предметы (например, через деревянные части конструкции, при падении провода на сухой грунт и т.д.) иногда приводит к ОЗЗ с весьма большим переходным сопротивлением. Так, в эксперименте, проведенном с участием автора, при падении провода ЛЭП 35 кВ на песок отмечалось переходное сопротивление, которое в течение нескольких секунд изменялось примерно от 7 до 5 кОм. В литературе указано, что в Польше нормируемая величина такого сопротивления составляет 13,5 кОм, в Канаде – 7,5 кОм. Такие большие величины переходных сопротивлений могут существенно усложнить требования к защитам воздушных ЛЭП от ОЗЗ, поскольку с ростом переходного сопротивления уменьшаются как напряжения U0, так и токи нулевой последовательности I0.

Дуговое замыкание

Наблюдается при пробоях и перекрытиях фазной изоляции. При этом весьма часто наблюдается «прерывистая» форма кривой тока в дуге. Такая дуга, как известно, называется перемежающейся. На рис. 2 приведены осциллограммы тока в месте ОЗЗ и тока в реле защиты поврежденной линии при замыкании на землю через дугу и наличии заземляющего резистора. Видно, что ток в реле защиты при ОЗЗ может на какое-то время прерываться и содержит большое количество высокочастотных составляющих.

В некоторых случаях в токе и напряжении нулевой последовательности могут возникать также субгармонические составляющие.Дуга, возникающая при ОЗЗ, может иногда прерываться на значительное, превышающее несколько периодов промышленной частоты, время. В литературе приведен анализ зависимости продолжительности бестоковой паузы, связанной с медленным зарядом емкости поврежденной фазы после погасания дуги, от параметров сети. Показано, что введение заземляющего резистора существенно уменьшает продолжительность такой паузы, что положительно сказывается на поведении защиты от замыканий на землю.Значительное содержание высокочастотных составляющих в токах нулевой последовательности как поврежденной, так и неповрежденных ЛЭП может привести к неселективной работе защиты. Во время некоторых проведенных экспериментов токи нулевой последовательности, например, неповрежденных ЛЭП в несколько раз превышали собственные емкостные токи при металлических ОЗЗ. Это объясняется тем, что высокочастотные составляющие в напряжении нулевой последовательности, которые, в частности, генерируются дугой, в значительной степени «усиливаются» в емкостных токах линий, так как емкостное сопротивление уменьшается пропорционально росту частоты. В результате токи в неповрежденных линиях могут существенно превысить емкостные токи, определенные при металлическом ОЗЗ, по которым ведется расчет уставок защиты.

ОБРЫВЫ ВОЗДУШНЫХ ЛЭП, НЕ СОПРОВОЖДАЮЩИЕСЯ

ДЛИТЕЛЬНЫМИ ОЗЗ

Иногда в сетях 6–35 кВ возникают повреждения, не приводящие к длительному протеканию тока нулевой последовательности, но как бы «смежные» с ОЗЗ, – например, обрыв шлейфа на воздушной ЛЭП. Если шлейф висит, не прикасаясь к опоре, то ток нулевой последовательности отсутствует и обычная защита от ОЗЗ не действует. При раскачивании ветром шлейф может кратковременно замыкаться на опору, что приведет к «клевкам» защиты, но её срабатывание обычно не происходит из-за кратковременности такого замыкания.

КОНСТРУКЦИИ ЛЭП И РЕЖИМЫ РАБОТЫ СЕТИ

Большое влияние на поведение защиты от ОЗЗ оказывает также схема сети, режимы её работы и конструктивное исполнение ЛЭП. Очевидно, что при ОЗЗ процессы по-разному протекают в сетях с воздушными или кабельными линиями.

ОЗЗ НА КАБЕЛЬНЫХ ЛИНИЯХ

ОЗЗ в кабелях с пластмассовой изоляцией при достаточно больших емкостных токах сети часто приводит к устойчивому горению дуги. При тех же условиях ОЗЗ в кабеле с бумажной изоляцией, пропитанной масляно-канифольной мастикой, обычно приводит к разложению масла и бурному выделению газов. Турбулентное движение газов в образовавшемся газовом пузыре приводит к погасанию дуги, последующее зажигание которой происходит лишь после «рассасывания» образовавшихся газов.Можно предположить, что при разных значениях тока ОЗЗ и различных фазах развития процесса длительность горения дуги и продолжительность бестоковых пауз могут варьироваться. В связи с этим, например, переход в кабельных сетях от мгновенно действующих защит от ОЗЗ к защитам, имеющим выдержку времени, может привести к отказам в тех случаях, когда продолжительность горения дуги становится меньше выдержки времени защиты.

ОЗЗ НА ВОЗДУШНЫХ ЛИНИЯХ

Похожие проблемы могут возникнуть при перемежающейся дуге и в защите воздушных линий. При наличии существенных бестоковых пауз, характерных для перемежающейся дуги, защиты от ОЗЗ, имеющие стандартную схему обеспечения выдержки времени, могут отказать, поскольку во время бестоковой паузы они «сбрасывают» замер по времени, – реле (или блок) выдержки времени возвращаются в исходное состояние. Для бесперебойного функционирования защиты в рассматриваемом случае необходимо обеспечить «запоминание» на некоторое время факта запуска защиты. Если в течение установленного времени запоминания ток нулевой последовательности появится вновь, защита должна срабатывать. Еще одной особенностью, выявленной при участии автора в сетях 35 кВ, является влияние при ОЗЗ цепей двухцепных воздушных ЛЭП друг на друга. Типовое подключение этих ВЛ (обозначенных как А, В, С) к сборным шинам подстанции показано на рис. 3.

В схеме в нейтраль 35 кВ каждого силового трансформатора включен заземляющий резистор R1, R2. Секционный выключатель обычно отключен. Между двумя цепями одной ВЛ, подключенными к разным секциям, существует связь через межцепные емкости. При ОЗЗ на одной из цепей напряжение нулевой последовательности возникает на обеих секциях сборных шин и токи нулевой последовательности протекают через линии, присоединенные как к левой секции сборных шин подстанции, так и к правой. Если не учесть эту особенность при разработке и проектировании защиты, то возможны неселективные отключения неповрежденных линий при ОЗЗ в сети.В некоторых сетях 35 кВ воздушные ЛЭП для удобства эксплуатации выполнены без транспозиции фазных проводов. При этом возникает несимметрия фазных емкостей относительно земли, что приводит к смещению нейтрали сети, т.е. появлению напряжения и токов нулевой последовательности при отсутствии ОЗЗ. Установка в нейтрали заземляющего резистора уменьшает это напряжение, тем не менее, в защитах от ОЗЗ появляется дополнительный ток, который, по мнению автора, следует учитывать при расчете уставок.Если в сетях 6–10 кВ, как правило, удается установить кабельные трансформаторы тока нулевой последовательности, имеющие малый небаланс в нормальном режиме, то в сети 35 кВ обычно для защиты от ОЗЗ приходится использовать фильтры из трех трансформаторов тока, небаланс которых может быть в некоторых случаях весьма велик. Если не учитывать его при расчете уставок, то возможны неселективные срабатывания.Токи нулевой последовательности могут изменяться в процессе эксплуатации в силу следующих причин:

  • в результате отключения отдельных ЛЭП и перемычек в схеме, например, в процессе эксплуатации;

  • при включении ЛЭП, присоединенных к шинам подстанции или распределительного пункта, после ремонта. При этом могут существенно изменяться также и углы между током и напряжением нулевой последовательности в поврежденной линии;

  • в одной из северных энергосистем из-за бурного развития схемы электроснабжения и замены части воздушных ЛЭП на кабельные за несколько лет ток нулевой последовательности изменился в 3 раза – с 30 А на одной секции сборных шин подстанции до примерно 90 А. Естественно, при этом необходимо пересмотреть и уточнить уставки защит от ОЗЗ;

  • при наличии дугогасящего реактора, включенного параллельно заземляющему резистору, эксплуатационный персонал не всегда использует его автоподстройку, даже если она имеется. При этом возможны режимы существенной перекомпенсации, что резко затрудняет работу большинства известных защит от ОЗЗ.

На практике неоднократно наблюдались случаи срабатывания защит неповрежденных линий после отключения линии с ОЗЗ. Одной из возможных причин такого неселективного срабатывания является то, что трансформатор напряжения (ТН) в процессе ОЗЗ накапливает энергию, которой после отключения поврежденной линии начинает обмениваться с емкостями неповрежденных ЛЭП. При этом вектора и величины токов в этих линиях попадают в зону срабатывания защиты, в результате чего защита от ОЗЗ действует на отключение неселективно. Наличие заземляющего резистора помогает и в этом случае, поскольку накопленная в ТН энергия быстро выделяется в резисторе. Дополнительной мерой, позволяющей отстроиться от таких неселективных срабатываний, является введение выдержки времени на срабатывание защиты.

ЗАЩИТЫ ОТ ОЗЗ

Современные защиты на микропроцессорной базе далеко не всегда удается отнести к какому-то конкретному классу, поскольку в них обычно используется несколько алгоритмов. При рассмотрении таких защит уместно говорить о двух и более классах, к которым они принадлежат. Защиты на электромеханической базе или выполненные с использованием микросхем среднего уровня интеграции, как правило, поддаются такой классификации, хотя отсутствие в печати, а иногда и в инструкциях по эксплуатации подробной и достоверной информации затрудняет этот процесс.Тем не менее попытаемся систематизировать то многообразие защит от ОЗЗ, которые в настоящее время эксплуатируются в энергосистемах России и могут быть использованы в резистивно-заземленных сетях.

Часть 2

ЗАМЫКАНИЯ НА ЗЕМЛЮ В СЕТЯХ 6-35 кВ

Случаи неправильных действий защит

Следует отметить, что, несмотря на многолетний опыт эксплуатации направленных токовых защит нулевой последовательности от однофазных замыканий на землю в сетях 6–35 кВ, в России до сих пор отсутствуют методики расчета их уставок. Автору не известны также материалы, регламентирующие расчет уставок чувствительных импортных защит от ОЗЗ, представленных сегодня на российском рынке. Однако это отдельный вопрос, выходящий за рамки публикуемой статьи.Мы же рассмотрим некоторые схемные особенности отечественных сетей, приводящие к неправильному действию защит от ОЗЗ.

ОЗЗ НА ПОДСТАНЦИИ

Как известно, обычно трансформаторы тока в сетях 6–10 кВ устанавливаются в фазах А и С. В фазе В трансформаторы тока не устанавливаются. Замыкание на землю сопровождается малыми токами, при которых защиты от междуфазных коротких замыканий (КЗ) не срабатывают, а должна подействовать защита от ОЗЗ. При двойных замыканиях на землю ток резко увеличивается и должна сработать защита от междуфазных КЗ.В процессе работы на подстанциях одной из энергосистем (подстанции 2 и 3 на рис. 1) выяснилось (эксперимент проводил к.т.н. доцент А.И. Щеглов, НГТУ), что те токопроводы, которые на одной из подстанций считались принадлежащими фазе А, на другой подстанции обозначались как фаза В и т.д. Такой разнобой в наименованиях фаз, как показало проведенное обследование, не редкость на сетевых подстанциях 6–35 кВ.На рис. 1 наименование сборных шин на подстанции 2 соответствует аналогичному на головной подстанции 1, а на подстанции 3 токопровод, обозначенный как фаза А, соответствует фазе С на головной подстанции, токопровод В соответствует фазе А, а фаза С на подстанции 3 соответствует фазе А на подстанции 1. При этом чередование фаз на подстанции 3 сохраняется, все векторные диаграммы при принятом наименовании фаз соответствуют стандартным, потребители не ощущают «перепутывания» фаз. Связи между подстанциями 2 и 3 по сети, кроме указанных на рисунке, отсутствуют.При возникновении однофазного замыкания на землю в фазе В на подстанции 2 напряжение в двух других фазах повышается. В процессе проводимого эксперимента произошел пробой изоляции на землю на одном из присоединений подстанции 3. На подстанции 3 соответствующая фаза была обозначена как фаза В и в ней не был установлен трансформатор тока. В действительности повредившаяся фаза соответствует фазе А на головной подстанции. В результате двойное замыкание в фазе В на обеих подстанциях, являясь, по сути, междуфазным КЗ, не привело к срабатыванию защит от междуфазных КЗ на подстанциях, поскольку фазы В (в действительности – разные фазы) не обработаны трансформаторами тока. Сработала защита от междуфазных КЗ на питающей ЛЭП (ЛЭП-4 на рис. 1). Если на подстанции 2 фазы не перепутаны, то она останется не отключенной вместе с ОЗЗ.

Такое действие защиты, кроме увеличения количества отключенных присоединений, может сильно осложнить последующий поиск поврежденного участка, поскольку на ЛЭП-4 – единственной, где сработала защита, повреждение отсутствует. На поврежденных же участках, где защита от ОЗЗ отстроена по времени от времени срабатывания защиты от КЗ, ни одна защита не сработала.Очевидно, что из сложившегося положения можно выйти, если привести обозначения одинаковых фаз на разных подстанциях в соответствие друг с другом. Если же это по какой-то причине затруднительно, то можно дополнительно установить на подстанциях трансформаторы тока в фазе В и защиту от междуфазных КЗ в трехфазном исполнении.

Дешевле установить на подстанциях надежную защиту отходящих присоединений от ОЗЗ, способную четко функционировать при уровнях токов, соответствующих междуфазным КЗ.В некоторой степени спасти ситуацию может установка на вводах в подстанцию защиты от ОЗЗ, согласованной по времени действия с защитой от междуфазных КЗ (выдержка времени защиты от ОЗЗ должна быть меньше, чем у защиты от КЗ). При этом отключение происходит на той подстанции, где произошло повреждение, что существенно облегчает последующую ликвидацию аварии и разбор ее причин.

ОЗЗ НА КАБЕЛЬНОЙ РАЗДЕЛКЕ

Непростая ситуация возникает при ОЗЗ на кабельной разделке, до места установки трансформатора тока нулевой последовательности (рис. 2). При этом повреждении защита рассматриваемого присоединения от ОЗЗ, выполненная на реле КА, не срабатывает, т.к. ток нулевой последовательности протекает от сборных шин до места замыкания, не попадая в кабельный трансформатор тока.Составляющая тока нулевой последовательности 3I0 , которая протекает от потребителя к месту ОЗЗ, обычно бывает незначительной и не приводит к срабатыванию защиты (защита от нее отстраивается). Не срабатывает также защита от КЗ (по крайней мере, до того момента, когда ОЗЗ переходит в междуфазное КЗ). Известны случаи, когда ОЗЗ на кабельной разделке, сопровождающееся открытой дугой, приводило к возгоранию разлитого в ячейке масла или его паров и дальнейшему пожару. В результате возникала серьезная авария. В какой-то степени помочь выйти из затруднительного положения в данном случае может либо дуговая защита (она пока установлена далеко не на всех объектах), либо защита от ОЗЗ, установленная на вводах на подстанцию (такая защита в рассматриваемом случае отключит всю секцию, от которой питается поврежденная линия). Но такая защита на вводах в настоящее время также обычно не предусматривается.

ОЗЗ В «ПУЧКАХ КАБЕЛЕЙ». ОБЩИЕ ВОПРОСЫ

Интересные случаи неправильной работы защиты были обнаружены в «пучках кабелей», т.е. в тех случаях, когда питание потребителям выдается через несколько параллельно включенных кабелей. Известно, что в этом случае на каждом кабеле устанавливается свой трансформатор тока нулевой последовательности (ТТНП). Вторичные обмотки этих ТТНП, например, могут быть включены либо параллельно, либо последовательно, после чего подключается токовое реле (например, РТЗ-51). В литературе, со ссылкой на эксперименты, проведенные в 30-е годы прошлого века в ТЭП, рекомендуется, как правило, включать вторичные обмотки ТТНП последовательно. Увеличение количества ТТНП в группе ведет к росту минимального тока срабатывания защиты, который можно получить. Например, минимальный ток срабатывания защиты, использующей один ТТНП типа ТЗРЛ и реле РТЗ-51, равен 0,69 А. Если два ТЗРЛ по цепям вторичных обмоток включены параллельно, минимальный ток срабатывания составляет 0,97 А, а при последовательном соединении обмоток – 1,25 А. При наличии трех кабелей и соответственно трех ТТНП, вторичные обмотки которых соединены параллельно, минимальный ток срабатывания равен 1,19 А, а при последовательном соединении обмоток – 1,95 А. Высокая точность приведенных результатов (до третьего знака) вызывает сомнения. Эксперименты, проведенные автором статьи совместно с инженером А.М. Хабаровым и доцентом А.И. Щегловым с трансформаторами тока типа ТЗЛМ, показывают, что при минимальной уставке реле РТЗ-51 первичные токи срабатывания комплектов защит, использующих разные экземпляры однотипных ТТНП, могут существенно отличаться от 0,69 А и друг от друга (в эксперименте с тремя разными ТТНП они находились в пределах 0,55–0,76 А). Отличаются и токи срабатывания при двух и большем количестве ТТНП.В результате в каждом конкретном случае первичный ток срабатывания защиты приходится определять опытным путем, пропуская через окно (или окна) ТТНП провод и поднимая ток до момента срабатывания защиты. С таким неудобством приходится сталкиваться каждому специалисту, занятому эксплуатацией защит кабельных линий от ОЗЗ. Как правило, указанная особенность не приводит к существенным затруднениям при выборе уставок. Однако бывают и другие случаи

ПИТАНИЕ РАЗНЫХ ПОТРЕБИТЕЛЕЙ ОТ ОДНОГО ВЫКЛЮЧАТЕЛЯ

На рис. 3 показана схема, где к одному выключателю подключен пучок из двух кабелей. В цепи каждого кабеля установлен свой трансформатор ТА тока нулевой последовательности. Такое решение можно считать типовым, если оба кабеля идут к одному потребителю. Рассматриваемый же пример характерен для давно построенных подстанций, сетевой район вокруг которых продолжает развиваться. В таких случаях иногда, при невозможности или неэкономичности расширения КРУ на подстанции, принимают решение о подключении к одному выключателю двух потребителей, питающихся по отдельным кабелям. Иногда такие решения принимаются и на вновь проектируемых подстанциях, когда у работников проектной организации нет полной информации о потребителях и их схемах присоединения к ЛЭП. Вторичные обмотки ТА в данном случае были включены последовательно и к ним подключена обмотка токового реле КА. Специалисты, эксплуатирующие описываемую установку, отметили, что часто защита рассматриваемых фидеров от ОЗЗ не срабатывает при однофазных замыканиях на землю в кабелях. Как выяснилось впоследствии, рассматриваемые кабели идут к разным потребителям и не соединяются между собой на противоположной от питающей подстанции стороне. При ОЗЗ на одном из кабелей по схеме протекают токи нулевой последовательности (на рисунке изображены стрелками). По трансформаторам тока ТА эти токи, как видно из рисунка, протекают в разных направлениях.

Проведенные в НГТУ эксперименты показали, что характеристики срабатывания защиты, собранной по рассматриваемой схеме, выглядят так, как это показано на рис. 4. По вертикальной оси отложен ток в трансформаторе тока ТА1, а по горизонтальной оси – в трансформаторе тока ТА2. Если рабочая точка попадает внутрь характеристики срабатывания (на рисунке показано несколько характеристик, соответствующих разным уставкам на реле КА типа РТЗ-51: синяя соответствует уставке реле в 20 мА, красная – в 80 мА, зеленая – в 140 мА). Из рисунка видно, что даже незначительные токи в ТА1 могут заблокировать защиту, т.е. привести к отказу в срабатывании при ОЗЗ, несмотря на достаточно большой ток в трансформаторе ТА2.

Например, если по ТА1 протекает ток в 15 А, то даже ток в 60 А, протекающий по трансформатору тока ТА2, не приводит защиту к срабатыванию.Так и произошло в приведенном случае: несмотря на то, что токи нулевой последовательности, протекающие по ТА1 и ТА2, отличались во много раз, при таком токораспределении защита не срабатывала. Пришлось в цепь каждого ТА ставить свое токовое реле. Теперь защита работает нормально. Справедливости ради следует отметить, что дальнейшие эксперименты А.М. Хабарова, результаты которых приведены на рис. 5, показали, что существенного улучшения характеристик защиты можно было добиться также, изменив схему соединения вторичных обмоток ТТНП с последовательной на параллельную. При этом зона несрабатывания защиты существенно уменьшалась и располагалась вблизи биссектрисы графика, т.е. заблокировать защиту теперь можно только противоположным по фазе током в ТА1, величина которого близка к току в ТА2. Обозначения на рис. 5 те же, что на рис. 4.

textarchive.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта