Eng Ru
Отправить письмо

Альтернативные источники энергии: 5 основных видов. Самый мощный природный поставщик электричества


Интересные факты об электричестве

korotkoe_zamykanieОдним из самых мощных природных «поставщиков» электричества считаются грозы. Только в одном разряде молнии может содержаться несколько десятков тысяч вольт.

В мире фауны пальму первенства среди наиболее «электризованных» животных удерживают электрические угри. Защищаясь, эти существа могут поражать противника разрядом примерно 500 В.

Наше тело тоже способно вырабатывать электричество. Которое возникает, например, за счет сокращения мышц сердца. Именно эти импульсы, производимые нашим «мотором», и улавливает аппаратура ЭКГ.

Свойства электричества очень интересовали Бенджамина Франклина. Президент США занимался не только политикой, но и наукой, а изобретение громоотвода принадлежит именно ему.

Как известно, скифы хоронили умерших с большими почестями и зарывали в землю вместе с покойниками немало драгоценностей. В последующие годы скифские курганы становились источником наживы для воришек. Но вставал вопрос, как отличить истинные захоронения от обычных холмов и холмиков. Профи, разграблявшие могилы, во время грозы внимательно наблюдали, куда ударяет молния. Считалось, что она «чувствует» спрятанный под землей металл и бьет именно в те места, где он сокрыт.

У древних русичей молния, ударившая в определенный участок земли, была указателем того, что именно в этом месте протекает подземный источник. А значит, именно здесь считалось выгоднее всего рыть колодец.

Луиджи Гальвани слыл среди современников колдуном. Трупы уже испустивших дух животных – лягушек, мышей, кошек и даже телят – в результате его экспериментов с электричеством начинали шевелиться, как будто в них еще теплилась жизнь.

Изучением электричества занимался и Людовик 15-й. Правда, использовал в качестве подопытных существ не мышей с лягушками, а людей – собственных солдат. 180 служивых королевского гарнизона образовали живую цепь, взявшись за руки, и стали проводниками тока, исходившего от разряда так называемой Лейденской банки.

Вдоволь поизгалялся еще над одними испытуемыми – монахами – физиолог Ж.-А. Ноле. Он построил их в одну цепочку и, пропустив через них электричество, тем самым заставил подпрыгнуть.

Сегодня эффект статического электричества известен даже младшему школьнику. Достаточно потереть расческой о шевелюру, затем поднести ее к мелко нарезанным кусочкам бумаги – и они «прилипнут», словно притянутые магнитом. А когда-то статическое электричество исследовалось как феномен, и занимался им один из отцов-основателей учения об электричестве – А. Вольта.

Вольта и Ом – единственные исследователи электрических явлений, не только оставшиеся в истории науки, но и давшие электрическим единицам измерений свои фамилии. Кстати, есть ряд стран, где явление, обратное сопротивлению – способность проводить ток, – обозначают величиной «Мо», то есть просто переставив буквы в слове «Ом».

Удивительно, но Ом, навсегда вписавший свое имя в историю физики, в молодости не отличался большой прилежностью. Экзамен по физике он завалил и даже не был допущен к ее преподаванию в обычной школе.

Электрификация приходила к жителям нашей планеты неравномерно. Позже остальных узнали об электричестве народы Африки. Чтобы освещать свои жилища, они использовали «естественные» источники — собирали в стеклянные банки светлячков.

В Германии электрификация одной из первых добралась на Октоберфест. В 1886 году освещением палаток по последнему слову техники занималась фирма, основанная отцом Эйнштейна. А сам молодой Альберт работал на пивном фестивале вкручивателем лампочек.

Работники метро в испанском Бильбао додумались получать электричество… из энергии тормозящих поездов. На полезные нужды удается перенаправить ее треть.

Самый крупный источник энергии для электростанций – уголь. В то время, когда уголь сжигается, в топках котлов нагревается вода. А когда пар от нагретой воды поднимается, он вращает турбины генераторов.

Знаменитый Бенджамин Франклин известен не только тем, что является одним из основателей США. Так же он был не только выдающимся политиком, но и ученым. Изобрел громоотвод именно Франклин после того, как провел исследования электричества.

На Руси считали, что самое лучшее место для колодца именно то, куда во время грозы попала молния. Очень высока была вероятность, что вода находится близко.

Интересный факт! В Африке и Южной Америки существуют районы, в которых не развита энергетика. В домах этих районов можно наблюдать весьма интересное зрелище: некие стеклянные банки, внутри которых кружат светлячки. Из таких баночек исходил очень яркий свет.

В нутрии молнии существует напряжение равное 100 000 000 вольт на один метр.

Самой первой из электрических цепей была живая электрическая цепь. 180 солдат Людовика XV взялись за руки и содрогались от того, что через них проходил разряд Лейденской банки. Вот такие опыты проводили при дворе.

Кстати, на заре эпохи электричества оснащение даже большого здания новомодным светом было не очень сложным занятием, хотя и безумно дорогим, ведь каждый осветительный прибор запитывался напрямую от источника питания и сложным схем электроснабжения просто не существовало. Другое дело, сегодняшний день, когда любое мало-мальски крупное здание требует уже на этапе своего строительства учёта множества нюансов в плане своего энергообеспечения, поэтому проектирование и монтаж электроснабжения являются очень ответственными задачами, к решению которых подключают даже отдельные компании, специализирующиеся именно на такой работе. Современные системы электроснабжения зданий включают в себя тысячи компонентов и являются довольно сложной структурой, обслуживание и модернизация которой также требуют профессионального и компетентного подхода. Но, вернёмся к основной теме статьи…

В Египте найдена первая батарейка, которая имела напряжение 4 вольта. Состояла она из медного цилиндра, в котором находился железный стержень. В медном цилиндре была залита жидкость, однако стержень, который находился внутри, не дотрагивался до стенок сосуда.

Во время охоты, или же для самообороны, электрический угорь способен ударить током, напряжение которого равно 500 вольт.

Электричество не только играет важную роль в жизни человека, но и в его здоровье. Сокращаясь, мышечные клетки сердца производят электроэнергию. Именно благодаря этим импульсам электрокардиограмма измеряет ритм сердца.

elektrichestvo1

smitnews.ru

Интересные факты об электричестве

Одним из самых мощных природных «поставщиков» электричества считаются грозы. Только в одном разряде молнии может содержаться несколько десятков тысяч вольт.

В мире фауны пальму первенства среди наиболее «электризованных» животных удерживают электрические угри. Защищаясь, эти существа могут поражать противника разрядом примерно 500 В.

Наше тело тоже способно вырабатывать электричество. Которое возникает, например, за счет сокращения мышц сердца. Именно эти импульсы, производимые нашим «мотором», и улавливает аппаратура ЭКГ.

Свойства электричества очень интересовали Бенджамина Франклина. Президент США занимался не только политикой, но и наукой, а изобретение громоотвода принадлежит именно ему.

Как известно, скифы хоронили умерших с большими почестями и зарывали в землю вместе с покойниками немало драгоценностей. В последующие годы скифские курганы становились источником наживы для воришек. Но вставал вопрос, как отличить истинные захоронения от обычных холмов и холмиков. Профи, разграблявшие могилы, во время грозы внимательно наблюдали, куда ударяет молния. Считалось, что она «чувствует» спрятанный под землей металл и бьет именно в те места, где он сокрыт.

У древних русичей молния, ударившая в определенный участок земли, была указателем того, что именно в этом месте протекает подземный источник. А значит, именно здесь считалось выгоднее всего рыть колодец.

Луиджи Гальвани слыл среди современников колдуном. Трупы уже испустивших дух животных – лягушек, мышей, кошек и даже телят – в результате его экспериментов с электричеством начинали шевелиться, как будто в них еще теплилась жизнь.

Изучением электричества занимался и Людовик 15-й. Правда, использовал в качестве подопытных существ не мышей с лягушками, а людей – собственных солдат. 180 служивых королевского гарнизона образовали живую цепь, взявшись за руки, и стали проводниками тока, исходившего от разряда так называемой Лейденской банки.

Вдоволь поизгалялся еще над одними испытуемыми – монахами – физиолог Ж.-А. Ноле. Он построил их в одну цепочку и, пропустив через них электричество, тем самым заставил подпрыгнуть.

Сегодня эффект статического электричества известен даже младшему школьнику. Достаточно потереть расческой о шевелюру, затем поднести ее к мелко нарезанным кусочкам бумаги – и они «прилипнут», словно притянутые магнитом. А когда-то статическое электричество исследовалось как феномен, и занимался им один из отцов-основателей учения об электричестве – А. Вольта.

Вольта и Ом – единственные исследователи электрических явлений, не только оставшиеся в истории науки, но и давшие электрическим единицам измерений свои фамилии. Кстати, есть ряд стран, где явление, обратное сопротивлению – способность проводить ток, – обозначают величиной «Мо», то есть просто переставив буквы в слове «Ом».

Удивительно, но Ом, навсегда вписавший свое имя в историю физики, в молодости не отличался большой прилежностью. Экзамен по физике он завалил и даже не был допущен к ее преподаванию в обычной школе.

Электрификация приходила к жителям нашей планеты неравномерно. Позже остальных узнали об электричестве народы Африки. Чтобы освещать свои жилища, они использовали «естественные» источники — собирали в стеклянные банки светлячков.

В Германии электрификация одной из первых добралась на Октоберфест. В 1886 году освещением палаток по последнему слову техники занималась фирма, основанная отцом Эйнштейна. А сам молодой Альберт работал на пивном фестивале вкручивателем лампочек.

Работники метро в испанском Бильбао додумались получать электричество… из энергии тормозящих поездов. На полезные нужды удается перенаправить ее треть.

partka.com

Альтернативные источники энергии для дома

Главная » Разное » Альтернативная энергия для частного дома

Для владельцев частных домов есть возможность значительно уменьшить счета за коммунальные услуги или вообще не пользоваться услугами поставщиков тепла, электроэнергии и газа. Можно даже обеспечить немалое хозяйство, а при желании и продавать излишки. Это реально и некоторыми уже проделано. Для этого используют альтернативные источники энергии. 

Альтернативные источники энергии могут обеспечить все потребности

Альтернативные источники энергии могут обеспечить все потребности

Откуда можно получать энергию и в каком виде

Содержание статьи

На самом деле энергия, в том или ином виде, в природе есть практически везде — солнце, ветер, вода, земля — везде есть энергия. Основная задача — извлечь ее оттуда. Этим человечество занимается уже не одну сотню лет и достигло неплохих результатов. На сегодняшний момент альтернативные источники энергии могут обеспечить дом теплом, электроэнергией, газом, теплой водой. Причем альтернативная энергетика не требует каких-то сверх навыков или сверх знаний. Все можно сделать для своего дома своими руками. Итак, что можно сделать:

  • Использовать солнечную энергию для получения электрической энергии или для подогрева воды — для ГВС или низкотемпературного отопления (солнечные батареи и коллекторы).
  • Преобразовывать энергию ветра в электричество (ветрогенераторы).
  • При помощи тепловых насосов отапливать дом, отбирая тепло у воздуха, земли, воды (тепловые насосы).
  • Получать газ из отходов жизнедеятельности домашних животных и птицы (биогазовые установки). Альтернативная энергетика - способ самостоятельно обеспечить собственные потребности

    Альтернативная энергетика — способ самостоятельно обеспечить собственные потребности

Все альтернативные источники энергии способны полностью обеспечить потребности человека, но для этого требуются слишком большие капиталовложения или/и слишком большие площади. Потому разумнее делать комбинированную систему: получать энергию от альтернативных источников, а при недостатке «добирать» из централизованных сетей.

Использование солнечной энергии

Один из самых мощных альтернативных источников энергии для дома — солнечное излучение. Для преобразования солнечной энергии есть два типа установок:

  • солнечные батареи вырабатывают электрический ток;
  • солнечные коллекторы греют воду. От солнечной энергии можно греть воду или получать электрический ток

    От солнечной энергии можно греть воду или получать электрический ток

Не стоит думать что работают установки только не юге и только летом. Хорошо они работают и зимой. В ясную погоду при выпавшем снеге выработка энергии только немного ниже летней. Если в вашем регионе большое количество ясных дней, использовать подобную технологию можно.

Солнечные батареи

Солнечные батареи собирают из фотоэлектрических преобразователей, которые изготавливают на базе минералов, которые под действием солнечного света испускают электроны — вырабатывают электрический ток. Для частного применения используются кремниевые фотопреобразователи. По своей структуре они бывают монокристаллическими (сделаны из одного кристалла) и поликристаллическими (много кристаллов). Монокристаллические имеют более высокий КПД (13-25% в зависимости от качества)  и более продолжительный срок службы, но стоят дороже. Поликристаллические вырабатывают меньше электроэнергии (9-15%) и быстрее выходят из строя, но имеют более низкую цену.

Это поликристаллический фотопреобразователь. Обращаться с ними надо аккуратно - они очень хрупкие (монокристаллические тоже, но не в такой степени)

Это поликристаллический фотопреобразователь. Обращаться с ними надо аккуратно — они очень хрупкие (монокристаллические тоже, но не в такой степени)

Сборка солнечной батареи своими руками несложна. Сначала надо приобрести некоторое количество кремниевых фотоэлементов (количество зависит от требуемой мощности). Чаще всего их покупают на китайских торговых площадках типа АлиЭкспресс. Затем порядок действий прост:

  • Сделать каркас (из деревянных планок или металлических уголков). Установить на него подложку. Прозрачную — стекло, оргстекло (монолитный поликарбонат) — если солнечная батарея будет висеть на окне, и непрозрачную (фанера, окрашенная в белый цвет), если устанавливать батарею будете не крыше.
  • При помощи алюминиевых проводников соединить элементы в одну батарею (параллельно). Проводники могут быть сразу припаяны к пластинам (стоят чуть дороже) или придется покупать отдельно и затем паять самостоятельно.
  • Готовую батарею надо загерметизировать. Заливают ее эпоксидной смолой или проклеивают специальной пленкой EVA. При герметизации необходимо следить чтобы не было пустот — воздушных пузырьков. Они очень сильно снижают производительность батареи, потому выгоняем их тщательно. Это уже готовая солнечная батарея

    Это уже готовая солнечная батарея

Несколько слов о том, почему подложку для солнечной панели (батареи) надо красить в белый цвет. Рабочий диапазон температур кремниевых пластин от — 40°C до +50°C. Работа при более высоких или низких температурах приводит к быстрому выходу элементов из строя. На крыше, летом, в закрытом объеме, температура может быть намного выше +50°C. Потому и необходим белый цвет — чтобы не перегреть кремний.

Солнечные коллекторы

При помощи солнечных коллекторов можно нагревать воду или воздух. Куда направлять нагретую солнцем воду — в краны для горячего водоснабжения или в систему отопления — выбираете вы сами. Только отопление будет низкотемпературным — для теплого пола, то что требуется. Но для того, чтобы температура в доме не зависела от погоды, систему требуется сделать резервируемой, чтобы при необходимости подключался другой источник тепла или котел переходил на другой источник энергии.

Наиболее распространенные трубчатые солнечные коллекторы

Наиболее распространенные трубчатые солнечные коллекторы

Солнечные коллекторы есть трех видов: плоские, трубчатые и воздушные. Наиболее распространенные — трубчатые, но и другие тоже имеют право на существование.

Плоские пластиковые

Две панели — черная и прозрачная — соединены в один корпус. Между ними расположен медный трубопровод в виде змейки. От солнца нижняя темная панель нагревается. от нее греется медь, а от нее — проходящая по лабиринту вода. Такой способ использования альтернативных источников энергии не самый эффективный, но привлекателен тем, что он очень прост в исполнении. Таким образом можно нагревать воду в бассейне. Надо будет только зациклить ее подачу (при помощи циркуляционного насоса). Точно также можно подогревать воду в емкости для летнего душа или использовать ее для бытовых нужд. Недостаток подобных установок — низкая эффективность и производительность. Чтобы нагреть большой объем воды, нужно или много времени, или большое количество плоских коллекторов.

Плоский солнечный коллектор

Плоский солнечный коллектор

Трубчатые коллекторы

Это стеклянные трубки — вакуумные или коаксиальные — по которым протекает вода. Специальная система позволяет по максимуму концентрировать в трубках тепло, которое передается протекающей через них воде.

Трубчатые коллекторы могут быть вакуумными и перьевыми

Трубчатые коллекторы могут быть вакуумными и перьевыми

В системе обязательно есть накопительная емкость, в которой вода и греется. Циркуляция воды в системе обеспечивается насосом. Такие системы самостоятельно не сделать — стеклянные трубки сделать своими руками проблематично и это — главный недостаток. Вместе с высокой ценой он сдерживает широкое внедрение этого источника энергии для дома. А сама система очень эффективна, на «ура» справляется с нагревом воды для ГВС и вносит приличный вклад в отопление.

Схема организации отопления и ГВС за счет альтернативных источников энергии - солнечных коллекторов

Схема организации отопления и ГВС за счет альтернативных источников энергии — с использованием солнечных коллекторов

Воздушные коллекторы

В нашей стране они встречаются очень редко и зря. Они просты, их легко можно сделать своими руками. Единственный минус — требуется большая площадь: могут занимать всю южную (восточную, юго-восточную) стену. Система очень похожа на плоские коллекторы — черная нижняя панель, прозрачная верхняя, но греют они напрямую воздух, который принудительно (вентилятором) или естественным путем направляется в помещение. Несмотря на кажущуюся несерьезность, таким способом можно на протяжении светового дня греть небольшие помещения, в том числе и технические или подсобные: гаражи, дачи, сараи для живности.

Устройство возушного коллектора

Устройство возушного коллектора

Такой альтернативный источник энергии как солнце, дарит нам свое тепло, но большая его часть уходит «в никуда». Словить небольшую ее долю и использовать для личных нужд — вот задача, которую решают все эти приспособления.

Ветрогенераторы

Альтернативные источники энергии хороши тем, что они по большей части относятся к возобновляемым ресурсам. Самый вечный, наверное, ветер. Пока есть атмосфера и солнце, ветер тоже есть. Может какой-то непродолжительный период воздух и будет неподвижным, но очень недолго. Наши предки использовали энергию ветра в мельницах, а современный человек преобразует ее в электричество. Все что для этого требуется:

  • вышка, установленная в ветреном месте;
  • генератор с приделанными к нему лопастями;
  • накопительной батареи и системы распределения электрического тока.

Вышка строится любая, из любого материала. Накопительная батарея — аккумулятор, тут ничего не придумаешь, а куда подавать электричество — ваш выбор. Остается только сделать генератор. Его тоже можно купить уже готовым, но вполне можно сделать из двигателя от бытовой техники — стиральной машины, шуруповерта и т.п. Нужны будут неодимовые магниты и эпоксидная смола, токарный станок.

Схема обеспечения частного дома электричеством за счет альтернативных источников энергии (ветрогенератор и солнечные батареи)

Схема обеспечения частного дома электричеством за счет альтернативных источников энергии (ветрогенератор и солнечные батареи)

На роторе мотора размечаем места под установку магнитов. Они должны находится на равном расстоянии друг от друга. Ротор выбранного мотора обтачиваем, формируя «посадочные места». Дно выемки должно иметь небольшой наклон, чтобы поверхность магнита была наклонена. В выточенные места на жидкие гвозди приклеиваются магниты, заливаются эпоксидной смолой. Поверхность затем наждачной бумагой доводится до гладкости. Далее надо приделать щетки, которые будут снимать ток. И все, можно собирать и запускать ветрогенератор.

Такие установки довольно эффективны, но их мощность зависит от многих факторов: интенсивности ветра, того, насколько правильно сделан генератор, насколько эффективно снимается разность потенциала щетками, от надежности электрических соединений и т.п.

Тепловые насосы для отопления дома

Тепловые насосы используют все имеющиеся в наличии альтернативные источники энергии. Они отбирают тепло у воды, воздуха, грунта. В небольших количествах это тепло есть там даже зимой, вот его и собирает тепловой насос и перенаправляет на обогрев дома.

Тепловые насосы также используют альтернативные источники энергии - тепло земли, воды и воздуха

Тепловые насосы также используют альтернативные источники энергии — тепло земли, воды и воздуха

Принцип работы

Чем же так привлекательны тепловые насосы? Тем, что затратив 1 кВт энергии на ее перекачку, в самом плохом варианте вы получите 1,5 кВт тепла, а самые удачные реализации могут дать до 4-6 кВт. И это никак не противоречит закону сохранения энергии, ведь расходуется энергия не на получение тепла, а не его перекачивание. Так что никаких нестыковок.

Схема теплового насоса для использования альтернативных источников энергии

Схема теплового насоса для использования альтернативных источников энергии

У тепловых насосов есть три рабочих контура: два наружных и они внутренний, а также испаритель, компрессор и конденсатор. Работает схема так:

  • В первом контуре циркулирует теплоноситель, который отбирает тепло у низкопотенциальных источников. Он может быть опущен в воду, закопан в землю, а может отбирать тепло у воздуха. Самая высокая температура, которая достигается в этом контуре — около 6°C.
  • Во внутреннем контуре циркулирует теплоноситель с очень низкой температурой кипения (обычно 0°C). Нагревшись, хладагент испаряется, пар попадает в компрессор, где сжимается до высокого давления. При сжатии выделяется тепло, пары хладагента разогреваются до температуры в среднем от +35°C до +65°C.
  • В конденсаторе тепло передается теплоносителю из третьего — отопительного — контура. Остывающие пары конденсируются, затем дальше попадают в испаритель. И далее цикл повторяется.

Отопительный контур лучше всего делать в виде теплого пола. Температуры для этого самые подходящие. Для радиаторной системы потребуется слишком большое число секций, что некрасиво и невыгодно.

Альтернативные источники тепловой энергии: откуда и как брать тепло

Но самые большие сложности вызывает устройство первого внешнего контура, который собирает тепло. Так как источники низкопотенциальные (тепла у низ мало), то для сбора его в достаточном количестве требуются большие площади. Есть четыре вида контуров:

  • Кольцами уложенные в воде трубы с теплоносителем. Водоем может быть любым — река, пруд, озеро. Главное условие — он не должен промерзать насквозь даже в самые сильные морозы. Более эффективно работают насосы, выкачивающие тепло из речки, в стоячей воде тепла передается намного меньше. Такой источник тепла реализуется проще всего — закинуть трубы, привязать груз. Только велика вероятность случайного повреждения. В воде сделать термальное поле проще всего

    В воде сделать термальное поле проще всего

  • Термальные поля с закопанными ниже глубины промерзания трубами. В этом случае недостаток один — большие объемы земляных работ. Приходится снимать грунт на большой площади, да еще на солидную глубину. Большой объем земляных работ

    Большой объем земляных работ

  • Использование геотермальных температур. Бурят некоторое количество скважин большой глубины, в них опускают контура с теплоносителем. Чем хорош этот вариант — мало места требует, но не везде есть возможность бурить на большие глубины, да и услуги буровых стоят немало. Можно, правда, сделать буровую установку самостоятельно, но работа все равно нелегкая. Со скважинами требуется меньше места

    Со скважинами требуется меньше места

  • Извлечение тепла из воздуха. Так работают кондиционеры с возможностью обогрева — отбирают тепло у «забортного» воздуха. Даже при минусовой температуре такие агрегаты работают, правда при не очень «глубоком» минусе — до -15°C. Чтобы работа была интенсивнее, можно использовать тепло от вентиляционных шахт. Закинуть туда несколько переть с теплоносителем и качать оттуда тепло. Самые компактные, но и самые нестабильные тепловые насосы, отбирающие тепло у воздуха

    Самые компактные, но и самые нестабильные тепловые насосы, отбирающие тепло у воздуха

Основной недостаток тепловых насосов — высокая цена самого насоса, да и монтаж полей сбора тепла обходится недешево. На этом деле можно сэкономить, сделав насос самостоятельно и также своими руками уложив контура, но сумма все равно останется немалой. Плюс в том, что отопление будет недорогим а действовать система будет долго.

Все альтернативные источники энергии имеют природное происхождение, но получать двойную выгоду можно только от биогазовых установок. В них перерабатываются отходы жизнедеятельности домашних животных и птицы. В результате получается некоторый объем газа, который после очищения и осушения можно использовать по прямому назначению. Оставшиеся переработанные отходы можно продать или использовать на полях для повышения урожайности — получается очень эффективное и безопасное удобрение.

Из навоза тоже можно получать энергию, только не в чистом виде, а в виде газа

Из навоза тоже можно получать энергию, только не в чистом виде, а в виде газа

Коротко о технологии

Образование газа происходит при брожении, и участвуют в этом бактерии, живущие в навозе. Для выработки биогаза подходят отходы любого скота и птицы, но оптимален навоз КРС. Его даже добавляют к остальным отходам для «закваски» — в нем содержатся именно нужные для переработки бактерии.

Для создания оптимальных условий необходима анаэробная среда — брожение должно проходить без доступа кислорода. Потому эффективные биореакторы — закрытые емкости. Чтобы процесс шел активнее, необходимо регулярное перемешивание массы. В промышленных установках для этого устанавливаются мешалки с электроприводами, в самодельных биогазовых установках это обычно механические устройства — от простейшей палки до механических мешалок, которые «работают» от силы рук.

Принципиальная схема биогазовых установок

Принципиальная схема биогазовых установок

В процессе образования газа из навоза участвуют два типа бактерий: мезофильные и термофильные. Мезофильные активны при температуре от +30°C до +40°C, термофильные — при +42°C до +53°C. Более эффективно работают термофильные бактерии. При идеальных условиях выработка газа с 1 литра полезной площади может достигать 4-4,5 литров газа. Но поддерживать в установке температуру в 50°C очень непросто и затратно, хотя затраты себя оправдывают.

Немного о конструкциях

Самая простая биогазовая установка — это бочка с крышкой и мешалкой. В крышке сделан вывод для подключения шланга, по которому газ поступает в резервуар. От такого объема много газа не получите, но на одну-две газовые горелки его хватит.

Более серьезные объемы можно получить от подземного или надземного бункера. Если речь о подземном бункере, то его делают из железобетона. Стенки от грунта отделяют слоем теплоизоляции, саму емкость можно разделить на несколько отсеков, в которых будет происходить переработка со сдвигом во времени. Так как работают в таких условиях обычно мезофильные культуры, весь процесс занимает от 12 до 30 дней (термофильные перерабатывают за 3 дня), потому сдвиг по времени желателен.

Схема бункерной биогазовой установки

Схема бункерной биогазовой установки

 

Навоз поступает через бункер загрузки, с противоположной стороны делают люк выгрузки, откуда отбирают переработанное сырье. Заполняется бункер биосмесью не полностью  — порядка 15-20%  пространства остается свободным — тут скапливается газ. Для его отвода в крышку встраивается трубка, второй конец которой опускается в гидрозатвор — емкость частично заполненную водой. Таким образом газ осушается — в верхней части собирается уже очищенный, он отводится при помощи другой трубки и уже может подавиться к потребителю.

Использовать альтернативные источники энергии может каждый. Владельцам квартир осуществить это сложнее, а вот в частном доме можно хоть все идеи реализовать. Есть уже даже реальные примеры того. Люди обеспечивают полностью потребности свои и немалого хозяйства.

stroychik.ru

Планета Земля: природный электрический мотор – генератор и альтернативная чистая энергетика на его основе - Энергетика и промышленность России - № 1 (53) январь 2005 года - WWW.EPRUSSIA.RU

Газета "Энергетика и промышленность России" | № 1 (53) январь 2005 года

Почему вращается Земля и как извлечь из этого вращения энергию?

На эти вечные вопросы правильные ответы ученые нашли сравнительно недавно.

Давно известно, что Земля - природный электромагнит в виде магнитного диполя с магнитными полюсами, почти противоположными географическим полюсам. Земля обладает и собственным электрическим зарядом и электрическим полем. В различных сферах планеты и в недрах и в Океане и в атмосфере давно зафиксированы электрические круговые токи. Однако вывод о том, что наша планета является, как ни парадоксально, – именно природной электрической машиной, которая и вращает планету, сделан сравнительно недавно.

Согласно теории Земля является природной индуктивноемкостной электрической машиной, причем одновременно и мотором и генератором.

Виды природных электрических машин нашей планеты их взаимосвязи

Перечислим их ниже в порядке нисходящей иерархии:

1. Околоземный магнитогазодинамический генератор (далее – МГД-генератор), преобразующий энергию потока солнечной плазмы и магнитного поля Земли (МПЗ) в природное электричество;

2. Околоземный МГД-двигатель, вращающий ионизированные слои атмосферы;

3. Планетарный электростатический природный высоковольтный мотор-генератор, работающий на принципе электродинамической индукции и взаимодействии электрического потенциала ионосферы с электропроводящими сферами и круговыми электрическими токами планеты;

4. Планетарный униполярный электромагнитный моторгенератор Фарадея;

5. Океанический и подземный магнитогидродинамические генераторы - двигатели, создающие смещение движущихся зарядов и перемещающих массы природного водного электролита в виде океанических течений и расплавленные электропроводящие породы внутри Земли;

6. Геомагнитная машина холода планеты – на ее магнитных полюсах.

Для всех этих совмещенных в разных геосферах электрических машин Земли характерны взаимосвязанность и саморегуляции их работы.

Иерархия уровней этой энергосистемы и взаимосвязь работы ее отдельных звеньев электромеханического преобразования солнечной энергии в кинетическую энергию вращения планеты пояснена кратко ниже.

Откуда, почему и как возникает природное электричество?

Как известно из электрофизики, возникновение электродвижущей силы (эдс) обусловлено такими физическими эффектами как электромагнитная, электродинамическая индукция, эффект Холла и некоторыми иными. Основным поставщиком природного электричества планеты является солнечный ветер.

Его исходно превращает в электрическое и магнитное поле планеты околоземный природный МГД-генератор.

Конкретно, он преобразует в рамках магнитосферы планеты весь поток солнечной плазмы посредством эффекта Холла и МПЗ в разность потенциалов и в природное околоземное геоэлектричество, путем сортировки и противоположного отклонения разноименных зарядов солнечной плазмы Определенный вклад в процесс вносит и ионосферная плазма.

В результате, возникает электрический заряд и электрическое поле планеты.

а) униполярной электромагнитный мотор–генератор планеты

Явление униполярной электромагнитной индукции открыто М. Фарадеем еще в 1831 г. Им же предложены раздельно с большим интервалом во времени первые униполярные мотор и генератор. Но Фарадей не исследовал их совместную работу, тем более в сочетании с электростатическим мотор-генератором. Известно, что работа униполярного электрического генератора основана на явлении униполярной электромагнитной индукции Для ее возникновения необходимо относительное перемещение силовых магнитных линий относительное ее электропроводящих сред. Есть ли такое их взаимное перемещение на нашей красивой планете? Накопленная естествознанием и всей наукой информация свидетельствует о том, что ось геомагнитного диполя неподвижна в пространстве за суточный оборот планеты вокруг своей оси. Значит, индуцированные токи от униполярной индукции Земли должны наводиться.

Рассмотрим физику этого процесса подробнее. Вследствие орбитального вращения планеты силовые магнитные линии пересекают ее поверхность и все ее электропроводящие среды. В результате в электропроводящих средах планеты (в ионизированной высотной атмосфере, в морях, в ее недрах) возникают электродвижущие силы от униполярной электромагнитной индукции. Поэтому в этих электропроводящих средах планеты, включая ее расплавленное ядро планеты генерируется эдс униполярной индукции и протекают индуцированные от этой эдс – круговые электрические токи.

Они также усиливает и самоподдерживает магнитное поле Земли – т.е. Земля по сути представляет собою оригинальный природный электрический самовозбуждающийся униполярный генератор Фарадея.

Отметим, что униполярный электромагнитный генератор Земли наводит дополнительную разность природных электрических потенциалов по ее меридианам между магнитными полюсами и магнитным экватором планеты с общим напряжением порядка 250-400 кВ.

Режим работы этого природного планетарного униполярного генераторов различен даже в течение суток, потому что околоземное магнитное поле планеты в освещенной и теневой части орбиты несколько различны. Как известно, магнитосфера Земли сплюснута давлением солнечной плазмы в освещенной части и вытянута солнечным ветром в теневой ее части орбиты осевого вращения, т.е. оно весьма неоднородно даже на одной широте Земли, особенно с удалением от планеты, возрастает, что существенно влияет на работу природных электрогенераторов. Порожденные явлениями электромагнитной индукций, электрические токи протекают повсюду на планете и приводят к возникновению электромагнитных силы и момента вращения планеты,

б) магнитогидродинамический мотор-генератор планеты

Взаимодействие индуцированных круговых околопланетных токов в природном электролите - водах Мирового океана, с силовыми линиями ГМПЗ порождают силы Лоренца в них и как следствие возникает эффект магнитогидродинамического двигателя. Именно этот природный планетарный МГД-двигатель порождает мощные глобальные теченияциркуляции природного электролита в Океане, и глобальную циркуляцию высотных слоев ионизированной атмосферы и ядро планеты. Образованный этой униполярной индукцией суммарный индуцированный электрический ток всех сред планеты путем его электромагнитного взаимодействия с ГМПЗ электромеханический момент вращения планеты и ее отдельных электропроводящих сред совпадает с направлением вращения планеты и океанических течений.

в) природный электростатический мотор-генератора планеты

Явление электродинамической индукции открыто в России в 2000 г. Суть явления состоит в возникновении эдс в проводнике от изменения потока электрической индукции вследствие взаимного перемещения проводника и источника внешнего электрического поля. Обнаруженное явление проявляется и на планете Земля, поскольку имеется и внешнее электрическое поле в виде суммарного заряда ионосферы и естественные проводники электропроводящих сфер планеты. В результате эффекта электродинамической индукции осуществляется генерация и трансформация природного электричества во все электропроводящие сферы планеты, и, в частности, зарядка подземных конденсаторов планеты. Далее электрическое поле путем эффекта электродинамической индукции образует в ионосфере и иных электропроводящих слоях мощный круговой ток. Этот ток создает суммарное магнитное поле планеты. Путем электродинамической индукции электрический заряд ионосферы и энергия полей планеты трансформируются в виде наведенной эдс и электроэнергии емкостных токов внутрь Земли.

В результате, происходит электрическая зарядка всех подземные и наземных природных электрических конденсаторов.

Электростатический планетарный генератор своими эдс порождают индуцированные круговые электрические токи во всех электропроводящих сферах планеты. Взаимодействие этих круговых токов с электрическим полем планеты порождает ее электромеханический момент вращения электростатического планетарного двигателя, который частично обеспечивает двигательный режим планеты.

Изменение солнечной активности и режимы работы планетного мотор-генератора

При изменении солнечной активности изменяются его напряжение, следовательно, изменяется и электромеханический момент вращения электростатического двигателя. Режимы этой совмещенной природной электрической машины изменчивы как в краткосрочном суточном цикле ее вращения так и в годовом и более длительных циклах. Это вызвано тем, что параметры магнитного и электрического полей планеты различны также в зависимости от положения планеты на ее эллипсной орбите относительно Солнца и от самой активности светила.

От этих параметров изменяется поток солнечной плазмы, пронизывающей магнитосферу планеты, что приводит к различным динамическим процессам и изменению момента вращения, напряжения и мощности этого природного униполярного мотор-генератора Земля. Циклические изменения магнитного поля планеты, ее орбитальной скорости вращения в периоды солнечной активности и разные геологические эпохи уже давно зарегистрированы учеными. В рамках предлагаемой теории электромеханического преобразования энергии планетой эта зависимость скорости вращения природного униполярного мотор-генератора от величин эдс и момента является логичной и вполне понятна. В полном соответствии с теорией униполярных электрических машин, можно смело утверждать, что в процессе инверсии геомагнитного поля, который уже начался, геомагнитное поле и далее будет снижаться, что приведет к замедлению суточного вращения планеты и в последующем к реверсу направления вращения планеты.

Поскольку многократная инверсия МПЗ уже доказана геофизиками, то за всю историю существования планеты, она уже многократно меняла свое направление осевого вращения в связи с реверсом МПЗ.

Таким образом, планета Земля – уникальная природная электрическая машина, которая и обеспечивает планете ее непрерывное ее вращение и протекание всех природных явлений. По конструкции и режиму работы она представляет собою совмещенный природный электрический индуктивноемкостной мотор-генератор.

Солнечный ветер является ее первичным источником энергии, а динамика солнечной активности существенно влияет на ее работу. Осевое вращение планеты обусловлено сразу двумя электромеханическими моментами (электромагнитным и электростатическим, действующими на нее тангенциально и согласно.

Благодаря возникновению силы Лоренца и эффекта МГД-двигателя существует целая совокупность взаимосвязанных электромеханических явлений переноса и глобального круговорота атмосферы и океанических вод и т.д.).

Метод преобразования энергии Земли в полезную электроэнергию

Как полезно использовать эту огромную возобновляемую энергию планеты и естественные природные процессы генерации природного электричества на планете для выработки дешевой электроэнергии? По мере более полного понимания геомагнитных электромеханических эффектов на планете и процессов генерации ею природного электричества и в связи с энергетическими и экологическими проблемами цивилизации эта научно- практическая задача использования этой чистой энергии в целях энергетики становится все более актуальной.

Использование природного электричества в целях энергетики

Предложен способ использования природного электричества, образующего вокруг планеты естественный околоземный постоянно подзаряжаемый электрический конденсатор «ионосфераЗемля» путем подключения одного конца электрической нагрузки к ионосфере планеты, заряженной положительно относительно поверхности планеты, через ионизирующий луч, направленный с поверхности Земли в ионосферу, причем другой конец электрической нагрузки надежно заземляют - Земля). В состав установки входит рентгеновский лазер с изолятором, кольцевой электрод, разрядник.

Благодаря огромному запасу электроэнергии природного электричества электрогенераторов планеты и наличию механизма его постоянного естественного возобновления данный способ может обеспечить электроэнергией либо отдельный электропотребитель ограниченной мощности либо вообще всю цивилизацию при условии безопасного размещения таких установок в пустынных безлюдных местах без ущерба для окружающей среды. В качестве источника ионизирующего излучения целесообразно использовать рентгеновский лазер. После надежного электрического пробоя ионосферы на нагрузку ионизирующий источник может быть отключен. Способ проверен в лабораторных условиях. Настоящий способ получения электроэнергии из природного электричества является экологически чистым и может служить альтернативой существующим энергозатратным способам традиционного получения электроэнергии.

Альтернативная контурная геомагнитная электроэнергетика

Поскольку магнитное и электрическое поле планеты неподвижны в пространстве, а поверхность планеты вращается относительно геомагнитных и геоэлектрических силовых линий, то униполярная и электродинамическая эдс наводится во всех токопроводящих контурах планеты, пересекающих геомагнитные силовые линии.

Вполне понятно, что в любом искусственном электропроводном проводнике и контуре также будет наводиться униполярная эдс. Ее величина зависит от протяжности проводника, параметров геомагнитного поля в месте его размещения и от ориентации проводника относительно геомагнитных силовых линий.

Оценочные расчет показывает, что в проводнике длиной 1 км., сооринтированном в направлении восток-запад, униполярная эдс от ГМПЗ составит десятки вольт в зависимости от широты планеты. В таком замкнутом контуре из дух проводников длиною 100 км и минимальным внутренним сопротивлением, размещенным перпендикулярно силовым геомагнитным линиям, с магнитным экранирование второго параллельного проводника, генерируемая мощность составит уже десятки Мвт. Принцип функционирования такой альтернативной энергетики уже вполне ясен и состоит в наведении униполярной индукции от ГМПЗ в любом искусственном электропроводящем контуре, который пересекают силовые геомагнитные линии. Проблема практической реализации такой нетрадиционной наземной контурной энергетики состоит в решении двух условий: 1. В необходимости правильной ориентации этих генераторных контуров средних широтах перпендикулярно геомагнитным силовым линиям и соответствующих устройств; 2. В магнитном экранировании обратного проводника этого замкнутого контура для исключения наведения в нем эдс от ГМПЗ.

В случае выполнения этих двух условий вполне реально получать электроэнергию в них путем электромеханического преобразования огромной кинетической энергии вращения планеты посредством униполярной электромагнитной индукции.

Для этого их необходимо размещать этот частично экранированный двойной токовый контур, перпендикулярно силовым геомагнитным линиям, т.е. с ориентацией плоскости этого контура в направлении восток-запад, поскольку силовые геомагнитные линии в средних широтах идут практически параллельно поверхности планеты.

Варианты выполнения и размещения геомагнитных контуров на планете

Эти искусственные генераторные электропроводные контура могут быть самых разных размеров и конструкций. Например, их можно выполнить в виде полых металлических труб, заливаемый водою, то одновременно от электротермического нагрева этих треб наведенными индукционными токами можно получить и тепловую энергию и горячую воду и пар. Регулирование электрической мощности осуществляем изменением сопротивления нагрузок, включенной в эти контура, или углом поворота контура.

Вполне пригодятся в качестве устройств контурной гэеомагнитоэлектроэнергетики, особенно в начальной период их внедрения и реализации, правильно спроектированные линии электропередач и даже магистральные трубопроводы.

Конструирование, проектирование и изготовление таких необычных и простых контурных геомагнитных электростанций не вызовет больших трудностей , потому что все основные параметры геомагнитного поля и самой планеты давно известны, и накоплен опыт проектирования униполярных электромашин.

Перспективы и предельные мощности контурной геомагнитной энергетики

Поскольку кинетическая энергия вращения планеты во многие миллиарды раз больше всей вырабатываемой электроэнергии цивилизацией, то суммарная мощность такой контурной геомагнитной энергетики может в принципе быть огромной.

Поэтому в перспективе такая контурная геоэлектроэнергетика может покрыть практически все текущие потребности цивилизации в электроэнергии без угрозы ощутимого торможения осевого вращения планеты. Усиление эффекта естественной генерации электроэнергии в искусственных контурах возможно путем размещения их в зонах магнитных аномалий планеты.

www.eprussia.ru

Топ-10 мировых производителей электроэнергии по странам

Подробности Подробности Опубликовано 01.03.2016 12:39 Просмотров: 31588

Топ-10 мировых производителей электроэнергии по странамПервая в мире электростанция был спроектирована и построена в 1878 году Зигмундом Шуккертом, чтобы осветить грот во дворовом саду Линдерхофа в Баварском городке Этталь. На этой электростанции было установлено 24 динамоэлектрических генератора с приводом от парового двигателя.

Первый в истории эксперимент с участием электроэнергии осуществил греческий философ, Фалес Милетский, потерев Янтарь (окаменевшая смола) о мех. Это явление было объяснено как статическое электричество. Слово "электричество", таким образом, происходит от греческого слова Elektron, что в переводе означает Янтарь.

Электричество может генерироваться несколькими способами. Наиболее широко используемым методом является метод электромагнитной индукции. В этом методе, механическая энергия, вырабатываемая тепловыми двигателями, гидроэлектроэнергия, энергия приливов и отливов, или энергия ветра разгоняет и заставляет вращаться электрический генератор, который вырабатывает электричество. Большая часть производства электроэнергии по всему миру вырабатывается именно таким методом.

В следующей таблице приводятся данные годового чистого производства электроэнергии, а также годовой расчет на душу населения чистого производства электроэнергии из десяти стран.

Страна Чистое производство (млрд. КВТ/Ч)

В расчете на душу населения. (КВТ/Ч)

Китай 5 649  5010
США 4 297 13536
Индия               1 208 1 108
Россия  1 064 7188
Япония 1 061 7960
Канада  615 18481
Германия            614 7102
Франция              555  8808
Бразилия            582 2893
Южная Корея 517 9704

*Все цифры приведены за 2015 год.

 

Топ 10 стран по производству электроэнергии

 

Китай

На первом месте находится Китай с производством электроэнергии 5 649 миллиардов киловатт-часов. Он входит в тройку стран, которая имеет обильные запасы угля и гидроэнергетических ресурсов. Сектор электроэнергетики Китая испытал большой прорыв в апреле 1996 года, когда был реализован «Закон электроэнергии». Этот закон обеспечивается оптимальное развитие электроэнергетики путем надлежащего регулирования производства, распределения и потребления электроэнергии. Закон также направлен на защиту законных прав инвесторов, менеджеров и потребителей, касающихся электроэнергетики.

 

США

Производство электроэнергии правительством США было оценена примерно в 4 297 млрд. киловатт-часов, что делает их вторым производителем электроэнергии в мире. Основные источники энергии, используемые для выработки электроэнергии в США включают в себя тепловые источники, гидроэнергетику, энергию ветра, ядерную энергетики, геотермальную энергию и другие возобновляемые источники.

 

Индия

Чистая выработка электроэнергии составляет 1 208 миллиардов киловатт-часов в год по состоянию на 2015, Индия занимает третье место в списке десяти ведущих мировых производителей электроэнергии. Большинство, едва ли не больше, чем 50%, электроснабжения Индии поступает от угольных электростанций. Гидроэнергетика и возобновляемые энергетические ресурсы вносят меньшую долю. Генерирующие мощности Индии многократно возросли в последние два десятилетия. Этот рост позволил Индии, стать одним из наиболее быстро растущих рынков для производства электроэнергии. Быстрый рост экономики, доходы населения и развитие городов дали толчок развитию электроэнергетического сектора в Индии.

 

Россия

Россия является второй по величине страной по запасам угля. Россия произвела 1 064 миллиардов киловатт-часов электроэнергии в 2015 году. Наша страна производит электроэнергию в основном из природного газа и угля. Более 60% электроэнергии вырабатывается на тепловых электростанциях. Другими источниками электроэнергии в России являются: атомные реакторы, гидроэлектростанции, ветровые, и другие возобновляемые ресурсы. Россия пятый по величине генератор гидроэлектроэнергии в мире. Россия, как известно экспортирует электроэнергию в такие страны, как Польша, Латвия, Финляндия, Турция, Литва и до недавнего времени в Украину.

 

Япония

Япония - которая произвела чистой электроэнергии на 1 061 млрд киловатт-часов в 2015 - является не только самодостаточной, когда речь заходит об электроснабжении; но она также является крупным экспортером оборудования, необходимого в энергетическом секторе. Электроэнергетический сектор в Японии в значительной мере полагается на ядерные ресурсы, и ядерную энергию. Однако, сейсмическая активность оказались опасными, и большинство АЭС были вынуждены закрыться. Япония добывает большую часть электричества с помощью гидроэнергии, наряду с другими возобновляемыми источниками энергии, такими как биомасса (дерево, трава, навоз, и т.п.), ветер, солнечная энергия и др.

 

Канада

Канада выступает на шестой позиции в этом списке с производством 615 миллиардов киловатт-часов электроэнергии в 2015 году. Помимо возобновляемых источников и атомной электростанции, гидроэнергетика играет важную роль в производстве электроэнергии в Канаде. Другие источники генерации электрической энергии относятся к энергии ветра, угля и природного газа, древесины, нефтепродуктов и кокса.

 

Германия

Мало того, что Германия самая большая страна в мире для производства электроэнергии за счет использования неводных средств и возобновляемых источников, она также является вторым по величине производителем ветровой электроэнергии. Германия произвела 614 миллиардов киловатт-часов в 2015 году и находится на седьмой позиции среди десяти ведущих мировых производителей электроэнергии. Ископаемые виды топлива, биотопливо, ветровая и солнечная энергетика являются одними из источников, используемых для выработки электроэнергии в Германии.

 

Франция

В 2015 году Франция получила чистую выработку электроэнергии в 555 млрд киловатт-часов, что делает ее восьмой в этом списке. Первичным источником энергии во Франции является ядерная энергетика. Более 75% общего производства электроэнергии приходится на АЭС. Благодаря этому, атомную энергетику во Франции называют "историей успеха", которая предоставляет эффективное, свободное от двуокиси углерода, дешевое, и экологически чистое производство электричества. В 2012 году, Франция была крупнейшим экспортером электроэнергии.

 

Бразилия

Бразилия имеет самый большой рынок электроэнергии в Южной Америке. Она также имеет наибольшую емкость водных ресурсов. Электроэнергетика Бразилии сильно зависит от гидроэнергетики. Она произвела 582 млрд киловатт-часов чистой электроэнергии в 2015 году. Более чем 80% потребности в электрической энергии осуществляет гидроэнергетика. Эта крайняя зависимость от гидроэлектроэнергии делает Бразилию уязвимой для дефицита электроэнергии в периоды засухи. Другие источники электроэнергии включают атомную энергетику, биотопливо, природный газ, уголь, масла, и энергию ветра.

 

Южная Корея

На десятой позиции в этом списке производителей электроэнергии, находится Южная Корея с чистой выработкой электроэнергии в 517 миллиардов киловатт-часов в 2015 году. Более чем две трети всего производства электроэнергии приходится на тепловые электростанции. Недостатки в использовании гидроэнергетики и других возобновляемых источников для производства электроэнергии были удовлетворены путем сосредоточения и развития атомной энергетики.

 

Различные способы производства электроэнергии

Основные методы, используемые, чтобы генерировать электрическую энергию из других видов энергии являются:

  • Электромагнитная индукцияНа основе закона Фарадея, это наиболее используемая форма производства электроэнергии, где кинетическая энергия преобразуется в электричество.
  • Статическое электричество<В этом методе, электричество генерируется путем физического разделения и переноса заряда. Примером может служить молния.
  • ЭлектрохимияКак следует из названия, этот метод, вырабатывает электроэнергию путем прямого преобразования химической энергии в электрическую. Примером может служить батарея.
  • Фотоэлектрический эффектВ этом методе электричество генерируется путем преобразования света в электрическую энергию. Примером могут служить солнечные батареи.
  • Термоэлектрический эффектРазница температур напрямую преобразуется в электричество посредством термоэлектрического эффекта. Примером может служить термоэлемент.
  • Пьезоэлектрический эффектВ этом методе, электроэнергия вырабатывается из механической деформации в электрически анизотропные молекулы.
  • Ядерное ПревращениеГенерация и ускорение заряженных частиц, таких как излучение альфа-частиц, генерирует электричество в этом методе.

 

Сегодня не только сложно, но даже невозможно вообразить жизнь без электричества. Однако, верно и то, что более 80% загрязнения воздуха вызвано из-за производства электроэнергии. Хотя немыслимо, функционировать без электричества, главное не переусердствовать, и взять производство электроэнергии под разумный контроль, пока это еще возможно, а для этого понадобится оборудование для ЛЭП которые вы можете выбрать обратившись в компанию "Норма-кабель".

Читайте также

Добавить комментарий

electrowelder.ru

нетрадиционная энергетика для частного дома, виды энергии своими руками

  • На сегодняшний день существует множество альтернативных источников энергии, которые применяются как в быту, так и на производствах На сегодняшний день существует множество альтернативных источников энергии, которые применяются как в быту, так и на производствах

    К нетрадиционным источникам энергии относят энергию солнца, ветра, а также ту, которая вырабатывается мускульными усилиями человека. Подробности узнаем ниже.

    Практичная альтернативная энергетика: виды

    Альтернативные источники энергии – это разнообразные перспективные способы получения, а также передачи полученной электроэнергии. При этом такие источники энергии, возобновляемые, и приносят минимальный вред окружающей среде. К таким источникам энергии относятсясолнечные панели и солнечные станции.

    Они в свою очередь подразделяются на 3 типа получения энергии с помощью:

    • Фотоэлементов;
    • Солнечных панелей;
    • Комбинированных вариантов.

    Популярно использование систем зеркал, которые нагревают воду до высоких температур, в результате чего получается пар, который, проходя через систему труб, крутит турбину. Ветряки и ветряные станции дают ток за счет энергии ветра, который крутит специальные лопасти, соединенные с генераторами.

    Популярно использование энергии волн, а также приливов и отливов.

    Как показывали опыты, такие электростанции способны вырабатывать около 15 кВт, что значительно превосходит по мощности солнечные и ветровые электростанции.

    Из геотермальных источников горячая вода широко используется для вырабатывания электроэнергии. Интересно использование кинетической энергии в некоторых помещениях, например, в спортивных залах, где движущиеся части тренажеров соединены с помощью тяг с генераторами, которые, в результате движения людьми, вырабатывают электроэнергию.

    Нетрадиционные источники энергии: способы получения

    Нетрадиционные источники энергоснабжения – это в первую очередь получение электроэнергии с помощью ветра, солнечного света, энергии волн приливов и отливов, а также с использованием геотермальных вод. Но, помимо этого, есть и другие способы с использованием биомассы и других методов.

    А именно:

    1. Получение электричества из биомассы. Такая технология подразумевает под собой производство из отходов биогаза, который состоит из метана и углекислого газа. Некоторые экспериментальные установки (гумиреактор от Михаэль) перерабатывают навоз, солому, что позволяет получить из 1 т материала 10–12 м3 метана.
    2. Получение электричества термальным способом. Преобразование тепловой энергии в электричество путем нагрева одних соединенных между собой полупроводников, состоящих из термоэлементов и охлаждения других. В результате разницы температур, получается электрический ток.
    3. Водородная ячейка. Это устройство, которое из обычной воды путем электролиза позволяет получить достаточно большое количество водородно-кислородной смеси. При этом расходы на получение водорода минимальны. Но такое получение электроэнергии пока только лишь находится в стадии экспериментов.

    Еще одной разновидностью получения электроэнергии является специальное устройство, которое называется двигатель Стирлинга. Внутри специального цилиндра с поршнем находится газ или жидкость. При внешнем нагреве объем жидкости или газа увеличивается, поршень двигается и заставляет работать в свою очередь генератор. Далее газ или жидкость, проходя по системе труб, охлаждается и двигает поршень обратно. Это довольно грубое описание, но дает понять, как работает данный двигатель

    Варианты альтернативной энергии

    В современном мире из-за некоторого ограничения природных ресурсов тепла и электроэнергии, некоторые люди используют альтернативные источники энергии. Одними из основных направлений альтернативной энергетики является поиск и использование нетрадиционных видов и источников.

    Источники, с помощью которых можно получить электричество:

    • Являются возобновляемыми;
    • Могут успешно заменить традиционные;
    • Постоянно усовершенствуются, ведутся разработки и исследования.

    Оснащение пъезоэлементами высокой мощности турникетов в метро и на железнодорожных станциях позволяет, при наступлении на специальные пластины, от давления человеческого веса вырабатывать электроэнергию. Такие действующие установки в качестве эксперимента установлены в некоторых городах Китая и Японии.

    Зеленая энергетика – получение биогаза, которым впоследствии можно отапливать дома из морских водорослей. Установлено, что с 1 га водной поверхности, занятой зелеными водорослями, можно получить до 150 000 м3 газа. Использование энергии спящих вулканов, вода закачивается в вулкан, под воздействием тепла и высоких температур, превращается в пар, который по специальным трубам поступает к турбине и крутит ее. В настоящее время в мире действует всего 2 таких экспериментальных установки. Использование сточной воды с помощью специальных ячеек, в которых находятся особенные бактерии, которые окисляют органику, приводит к тому, что в ходе химических процессов, происходит выработка электронов и, как следствие, электричества.

    Источники энергии дома: варианты

    В связи с ростом тарифов на энергию многие люди начинают задумываться не только об экономии энергии, но и об дополнительных источниках энергии. Некоторые люди предпочитают сделать самоделки своими руками, а некоторые предпочитают какие-либо готовые решения, к которым могут относиться определенные варианты.

    А именно:

    1. Установка на стекла солнечных панелей, которые обладают высокой прозрачностью, благодаря чему их можно размещать даже в многоэтажных домах. Но при этом их КПД даже в солнечную ясную погоду не превышает 10%.
    2. Для освещения некоторых участков помещения используются светодиоды и светодиодные лампы на небольших аккумуляторах соединенных с солнечной панелью. Достаточно в течение дня заряжать, таким образом, аккумулятор чтобы вечером получить освещение.
    3. Установка традиционных солнечных панелей, которые позволяют заряжать аккумуляторы и от них уже через инвертор частично питать домашние приборы и лампы. Можно также вырабатывать горячую воду в теплое время года путем установки вакуумного насоса и теплового коллектора на крышу.

    У жителей, проживающих в городских условиях, к сожалению, выбор дополнительных источников энергии ограничен, в отличие от тех, кто проживает в загородных домах. В частном доме гораздо больше возможностей сделать автономное электроснабжение. А также сделать для загородного дома или на даче автономные независимые системы обогрева.

    Отопление для частного дома: альтернативные источники энергии

    Среди наиболее распространенных способов получения электроэнергии является движущая сила ветра. Достаточно поставить около загородного дома высокую мачту с движущимися лопастями, соединенными с генератором, чтобы получать электрический ток и заряжать аккумуляторы.

    Для получения тепла, можно использовать тепловые насосы, при их использовании, можно брать тепло практически из любого места:

    • Воздуха;
    • Воды;
    • Земли.

    Принцип их работы, как в холодильнике, только при прокачивании через насос воздуха или воды, получается тепло. Самодельные конструкции, ничуть не уступают промышленным. В домашних условиях можно самостоятельно изготовить подобные конструкции достаточно найти чертежи и изготовить ветряк, чтобы получить дешевое электричество буквально из воздуха. Есть и другие виды и возможности получить электроэнергию и отопление для частного дома.

    Эффективно использование обыкновенного генератора, особенно в северных регионах России, так как, при недостатке солнечного света, панели просто бесполезны.

    То же самое касается и тепловых конвекторов, которые предназначены для нагрева воды. Несколько проще для получения тепла использование котла на биотопливе, в качестве материала для топки используются прессованные опилки, гранулы, в том числе и из соломы и торфа. Но такие котлы на биотопливе стоят несколько дороже, чем работающие на газе.

    Ток и тепло своими руками: альтернативная энергетика для дома

    Дармовая электроэнергетика для квартиры или частного дома всегда интересовала людей, так как в последние годы тарифы на отопление и электроэнергию только лишь растут. И для экономии, многие люди стараются найти варианты получения тепла и энергии даром. Для этого изготавливают разные системы, в том числе пытаются изобрети вечный источник, и придумывают необычные и новые способы получения тока и тепла.

    Относительная бесплатная энергетика (сборка солнечных панелей своими руками):

    • Можно приобрести части солнечной батареи в Китае;
    • Самостоятельно все собрать;
    • Как правило, к каждому комплекту прилагается схема сборки.
    • Все это позволяет самостоятельно собрать панель и схему питания, в частности квартиры или частного дома.

    Безтопливная халявная энергетика получается из электромагнитных волн – любые колебания можно преобразовать в электричество. Правда КПД таких схем очень мал, но, тем не менее, с помощью специально сделанных приборов можно заряжать телефоны и прочую мелкую бытовую технику.

    Правда зарядка займет довольно длительное время.

    Для получения тепла, некоторые умельцы используют метан, который в свою очередь получают из навоза животных и прочих отходов. Правильно сделанная система является хорошим вариантом для получения тепловой энергии и обогрева дома, а также для приготовления пищи.

    Солнце и ветер, как альтернативные виды энергии

    Альтернатива получения, как тепла, так и электричества, для многих людей является актуальной Малая солнечная энергетика – это использование солнечных батарей на основе кремния, количество получаемой энергии зависит от количества батарей, широты местонахождения дома или иного помещения.

    Интересна технология получения энергии с помощью генераторов, достаточно к генератору подключить контроллер заряда, и соединить всю схему с аккумуляторами, так можно получить достаточное количество энергии.

    Актуально использование специальных термоэлектрических преобразователей энергии тепла в электричество, проще говоря, использование термопары из полупроводников. Одна часть пары нагревается, вторая охлаждается, в результате этого возникает свободная электроэнергия, которую можно использовать в быту. Можно использовать в качестве выработки энергии детей, достаточно соединить на детской площадке качели с динамо-машиной с тем, чтобы получать небольшой процент электроэнергии, который может использоваться для освещения детской площадки.

    Бесплатная электроэнергия своими руками (видео)

    Альтернатор или, проще говоря, генератор электроснабжения на сегодняшний день является наиболее привычным способом получения электрической энергии. Но, несмотря на это, находится достаточно много возможностей для получения электроэнергии с использованием альтернативных источников по всему земному шару.

    Оцените статью: Поделитесь с друзьями!

    homeli.ru

    Альтернативные виды энергии. Обзор источников электичесива

    Ограниченные запасы ископаемого топлива и глобальное загрязнение окружающей среды заставило человечество искать возобновляемые альтернативные источники такой энергии, чтобы вред от ее переработки был минимальным при приемлемых показателях себестоимости производства, переработки и транспортировки энергоресурсов.

    Современные технологии позволяют использовать имеющиеся альтернативные энергетические ресурсы, как в масштабе целой планеты, так и в пределах энергосети квартиры или частного дома.

    Буйное развитие жизни на протяжении нескольких миллиардов лет наглядно доказывает обеспеченность Земли источниками энергии. Солнечный свет, тепло недр и химический потенциал позволяют живым организмам осуществлять множественные энергетические обмены, существуя в среде, созданной физическими факторами – температурой, давлением, влажностью, химическим составом.

    Круговорот веществ и энергии в природе

    Экономические критерии альтернативных источников энергии

    Человек издревле использовал энергию ветра как движитель для кораблей, что позволяло развиваться торговле. Возобновляемое топливо из отмерших растений и отходов жизнедеятельности было источником тепла для приготовления пищи и получения первых металлов. Энергия перепада воды приводила в действие мельничные жернова. На протяжении тысячелетий это были основные виды энергии, которые мы теперь называем альтернативными источниками.

    С развитием геологии и технологий добычи недр стало экономически выгодней добывать углеводороды и сжигать их для получения энергии по мере необходимости, чем ждать у моря погоды в буквальном смысле, надеясь на удачное совпадение течений, направления ветра, облачности.

    Нестабильность и изменчивость погодных условий, а также относительная дешевизна двигателей, работающих на ископаемом топливе, заставили прогресс развиваться по пути использования энергии недр земли.

    Диаграмма, демонстрирующая соотношение потребления ископаемых и возобновляемых источников энергии

    Усвоенный и переработанный живыми организмами углекислый газ, покоившийся в недрах миллионы лет, снова возвращается в атмосферу при сжигании ископаемых углеводородов, что является источником парникового эффекта и глобального потепления. Благополучие будущих поколений и хрупкое равновесие экосистемы заставляют человечество пересмотреть экономические показатели и использовать альтернативные виды энергии, ведь здоровье дороже всего.

    Сознательное использование возобновляемых природой альтернативных источников энергии становится популярным, но, как и прежде, преобладают экономические приоритеты. Но в условиях загородного дома или на даче использование источников альтернативного электричества и тепла может оказаться единственным экономически выгодным вариантом получения энергии, если проведение, подключение и установка линий энергоснабжения окажется слишком дорогой затеей.

    Обеспечение удаленного от цивилизации дома минимально необходимым объемом электроэнергии с помощью солнечных панелей и ветрогенератора

    Возможности использования альтернативных видов энергии

    Пока ученые исследуют новые направления и разрабатывают технологии холодного термоядерного синтеза, домашние мастера могут использовать следующие альтернативные источники энергии для дома:

    • Солнечный свет;
    • Энергия ветра;
    • Биологический газ;
    • Разница температур;

    По данным альтернативным видам возобновляемой энергии существуют готовые решения, успешно внедренные в массовое производство. Например – солнечные батареи, ветрогенераторы, биогазовые установки и тепловые насосы различной мощности можно приобрести вместе с доставкой и установкой, чтобы иметь свои альтернативные источники электричества и тепловой энергии для частного дома.

    Промышленно выпускаемая солнечная панель, установленная на крыше частного дома

    В каждом отдельном случае должен быть свой собственный план обеспечения домашних электроприборов источниками альтернативной электрической энергии, согласно потребностей и возможностей. Например, для питания ноутбука, планшета, зарядки телефона можно использовать источник напряжением 12 В., и переносные адаптеры. Данного напряжения, при достаточном объеме аккумулятора энергии будет достаточно для освещения при помощи светодиодных лент.

    Солнечные батареи и ветрогенераторы должны заряжать аккумуляторы, ввиду непостоянства освещения и силы энергии ветра. С увеличением мощности альтернативных источников электричества и объема аккумуляторов возрастает энергетическая независимость автономного энергоснабжения. Если требуется подключить к альтернативному источнику электричества электроприборы, работающие от 220 В., то применяют преобразователи напряжения.

    Схема, иллюстрирующая питание домашних электроприборов от аккумуляторов, заряжаемых ветрогенератором и солнечными панелями

    Альтернативная энергия солнечного излучения

    В домашних условиях практически невозможно создать фотоэлементы, поэтому конструкторы альтернативных источников энергии используют готовые комплектующие, собирая генерирующие конструкции, добиваясь необходимой мощности. Соединение фотоэлементов последовательно увеличивает выходное напряжение полученного источника электричества, а подключение собранных цепочек параллельно дает больший суммарный ток сборки.

    Схема подключения фотоэлементов в сборке

    Ориентироваться можно на интенсивность энергии солнечного излучения – это примерно один киловатт на квадратный метр. Также нужно учитывать коэффициент полезного действия солнечных батарей – на данный момент это приблизительно 14%, но ведутся интенсивные разработки для увеличения КПД солнечных генераторов. Выходная мощность зависит от интенсивности излучения и угла падения лучей.

    Можно начать с малого – приобрести одну или несколько небольших солнечных батарей, и иметь источник альтернативного электричества на даче в объеме, необходимом для зарядки смартфона или ноутбука, чтобы иметь доступ к глобальной сети интернет. Замеряя ток и напряжение, изучают объемы потребления энергии, обдумывая перспективу дальнейшего расширения использования источников альтернативной электроэнергии.

    Установка дополнительных солнечных батарей на крыше дома

    Нужно помнить, что солнечный свет также является источником теплового (инфракрасного) излучения, которое может использоваться для нагрева теплоносителя без дальнейшего преобразования энергии в электричество. Данный альтернативный принцип применяется в солнечных коллекторах, где при помощи отражателей инфракрасное излучение концентрируется и передается теплоносителем в систему отопления.

    Солнечный коллектор в составе домашней системы отопления

    Альтернативная энергия ветра

    Простейший путь для самостоятельного создания ветрогенератора – это использовать автомобильный генератор. Для увеличения оборотов и напряжения источника альтернативного электричества (эффективности генерации  электрической энергии) следует применить редуктор или ременную передачу. Объяснение всевозможных технологических нюансов выходит за рамки данной статьи – нужно изучать принципы аэродинамики, чтобы понять процесс преобразования скорости потока воздушных масс в альтернативное электричество.

    На начальном этапе изучения перспектив преобразования возобновляемых источников альтернативной энергии ветра в электричество, нужно выбрать конструкцию ветряка. Наиболее распространенные конструкции – это лопастной винт с горизонтальной осью, ротор Савониуса, и турбина Дарье.   Лопастной винт с тремя лопастями в качестве источника альтернативной энергии – наиболее распространенный вариант для самодельного изготовления.

    Разновидности турбин Дарье

    При проектировании лопастей винтов большое значение имеет угловая скорость вращения ветряка. Существует так называемый фактор эффективности винта, который зависит от скорости воздушного потока, а также длины, сечения, количества и угла атаки лопастей.

    Обобщенно данную концепцию можно понять так – при малом ветре длины лопасти с самым удачным углом атаки будет недостаточно для достижения максимальной эффективности генерации энергии, но с многократным усилением потока и увеличением угловой скорости кромки лопастей будут испытывать чрезмерное сопротивление, которое может их повредить.

    Сложный профиль лопасти ветряка

    Поэтому длину лопастей рассчитывают исходя из средней скорости ветра, плавно изменяя угол атаки относительно удаления от центра винта. Для предотвращения поломки лопастей при ураганном ветре выводы генератора замыкают накоротко, что препятствует вращению винта. Для приблизительных расчетов можно принимать один киловатт альтернативной электроэнергии от трехлопастного винта диаметром 3 метра при средней скорости ветра 10м/с.

    Для создания оптимального профиля лопасти потребуется компьютерное моделирование и ЧПУ станок. В домашних условиях мастера используют подручные материалы и инструменты, стараясь максимально точно воссоздать чертежи альтернативных источников ветровой энергии. В качестве материалов используется дерево, метал, пластик и т.д.

    Самодельный винт ветрогенератора, сделанный из дерева и металлической пластины

    Для генерации электричества мощности автомобильного генератора может оказаться недостаточно, поэтому мастера своими руками изготавливают генерирующие электрические машины,  или переделывают электродвигатели. Наиболее популярная конструкция источника альтернативного электричества – ротор с попеременно размещенными неодимовыми магнитами и статором с обмотками.

    Роторы самодельного генератора

    Статор с обмотками для самодельного генератора

    Альтернативная энергия биогаза

    Биологический газ в качестве источника энергии получают в основном двумя способами – это пиролиз и анаэробное (без доступа кислорода) разложение органических веществ. Для пиролиза требуется лимитированная подача кислорода, необходимая для поддержания температуры реакции, при этом выделяются горючие газы: метан, водород, угарный газ и другие соединения: углекислый газ, уксусная кислота, вода, зольные остатки. В качестве источника для пиролиза лучше всего подходит топливо с большим содержанием смол. На видео ниже показана наглядная демонстрация выделения горючих газов из древесины при нагреве.

    Для синтеза биогаза из отходов жизнедеятельности организмов применяются метантанки различных конструкций. Устанавливать метантанк дома своими руками имеет смысл при наличии в домашнем хозяйстве курятника, свинарника и поголовья крупного рогатого скота. Основной газ на выходе – метан, но большое количество примеси сероводорода и других органических соединений требует применения систем очищения для удаления запаха и предотвращения засорения горелок в тепловых генераторах или загрязнения топливных трактов двигателя.

    Нужно основательное изучение энергии химических процессов, технологий с постепенным набором опыта, пройдя путь проб и ошибок, чтобы получить на выходе источника горючий биологический газ приемлемого качества.

    Независимо от происхождения, после очистки смесь газов подается в теплогенератор (котел, печь, конфорка плиты) или в карбюратор бензинового генератора, — такими способами получается полноценная альтернативная энергия своими руками. При достаточной мощности газогенераторов возможно не только обеспечение дома альтернативной энергией, но и обеспечивается работа небольшого производства, как показано на видео:

    Тепловые машины для экономии и получения альтернативной энергии

    Тепловые насосы широко применяются в холодильниках и кондиционерах. Было замечено, для перемещения тепла требуется в несколько раз меньше энергии, чем для его генерации. Поэтому студеная вода из скважины имеет тепловой потенциал относительно морозной погоды. Понижая температуру проточной воды из скважины или из глубин незамерзающего озера, тепловые насосы отбирают тепло и передают его в систему отопления, при этом достигается значительная экономия электричества.

    Экономия электроэнергии с помощью теплового насоса

    Другой тип тепловой машины – двигатель Стирлинга, работающий от энергии разницы температур в замкнутой системе цилиндров и поршней, размещенных на коленчатом вале под углом 90º. Вращение коленвала может использоваться для генерации электричества.  В сети имеется множество материалов из проверенных источников, подробно объясняющих принцип действия двигателя Стирлинга, и даже приводятся примеры самодельных конструкций, как на видео ниже:

    К сожалению, домашние условия не позволяют создать двигатель Стирлинга с параметрами выхода энергии выше, чем у забавной игрушки или демонстрационного стенда. Для получения приемлемой мощности и экономичности требуется, чтобы рабочий газ (водород или гелий) был под большим давлением (200 атмосфер и больше). Подобные тепловые машины уже используются в солнечных и геотермальных электростанциях и начинают внедряться в частный сектор.

    Двигатель Стирлинга в фокусе параболического зеркала

    Чтобы получить максимально стабильное и независимое электричество на даче или в частном доме потребуется совмещения нескольких альтернативных источников энергии.

    Новаторские идеи по созданию альтернативных источников энергии

    Целиком и полностью охватить весь спектр возможностей возобновляемой альтернативной энергетики не сможет ни один знаток. Альтернативные источники энергии имеются буквально в каждой живой клетке. Например, водоросль хлореллы давно известна как источник белков в корме для рыб.

    Ставятся опыты по выращиванию хлореллы в невесомости, для применения в качестве пищи  космонавтов при дальних космических перелетах в будущем. Энергетический потенциал водорослей и других простых организмов изучается для синтеза горючих углеводородов.

    220183

    Аккумулирование солнечного света в живых клетках хлореллы, выращиваемой в промышленных установках

    Нужно иметь в виду, что преобразователя и аккумулятора энергии солнечного света лучшего, чем фторопласт живой клетки пока не придумано. Поэтому потенциальные возобновляемые источники альтернативного электричества имеются в каждом зеленом листе, осуществляющем фотосинтез.

    Основная сложность состоит в том, чтобы собрать органический материал, при помощи химических и физических процессов достать оттуда энергию и преобразовать ее в электричество. Уже сейчас большие площади аграрных земель отводятся под выращивание альтернативных энергетических культур.

    Уборка мискантуса — энергетической агротехнической культуры

    Другим колоссальным источником альтернативной энергии может служить атмосферное электричество. Энергия молний огромная и обладает разрушительными воздействиями, и для защиты от них используются молниеотводы.

    альтТрудности с обузданием энергетического потенциала молнии и атмосферного электричества состоят в большом напряжении и силе тока разряда за очень короткое время, что требует создания многоступенчатых систем из конденсаторов для накопления заряда с последующим использованием запасенной энергии. Также хорошие перспективы имеются у статического атмосферного электричества.

    Похожие статьи

    infoelectrik.ru


    © ЗАО Институт «Севзапэнергомонтажпроект»
    Разработка сайта