Eng Ru
Отправить письмо

Когда не помогает ЦАП. Цифровые потенциометры в деталях. Часть первая. Схема электронного сопротивления


Электронный переменный резистор - Diodnik

Электронный переменный резистор

В своих самодельных поделках радиолюбители практически всегда применяют переменные резисторы для регулировки громкости или напряжения ну и естественно, каких либо других параметров. Но прибор с кнопками на лицевой панели смотрится куда более интересно и современно, чем с обыкновенными ручками-крутилками. Применения микроконтроллерного управления не всегда целесообразно в простеньких поделках, а также тяжело для новичка, а вот повторить описанный ниже электронный переменный резистор сможет, наверное, каждый.

Электронный переменный резистор

Схема имеет настолько малые габариты, что ее можно впихнуть в практически любое самодельное устройство. Она полностью выполняет функцию обыкновенного переменного резистора, не содержит дефицитных и специфических компонентов.

Электронный переменный резистор

Основу ее составляет полевой транзистор КП 501 (или любой другой его аналог).

Нажимая кнопку SB1, мы накапливаем заряд на электролитическом конденсаторе С 1, что позволяет приоткрыть транзистор и повлиять на сопротивление на выходных клеммах схемы. Нажимая кнопку SB2, мы разряжаем конденсатор С 1, что приводит к постепенному закрыванию транзистора. При постоянном зажатии, какой либо из кнопок, изменения сопротивления производиться плавно.

Плавность регулировки такого электронного переменного резистора зависит от емкости конденсатора С 1 и номинала резистора R 1. Максимальное сопротивление, которое способна имитировать схема зависит от подстроечного резистора R 2. Схема начинает работать сразу и дополнительной настройки не требует, кроме как подстройки максимального сопротивления резистором R 2.

После отключения питания схемы, такой электронный переменный резистор не сбрасывает настройки сразу, а сопротивление схемы увеличивается постепенно, что связанно с саморазрядом конденсатора С 1. При использовании нового и качественного конденсатора С 1 настройки схемы могут продержаться около суток.

Наверное, самым востребованным применением этой схемы станет электронный регулятор громкости. Такая электронная регулировка громкости не лишена своих недостатков, но важнейшим фактором для радиолюбителей наверняка станет простота повторения.

Демонстрацию работы этой схемы смотрим ниже, ставим лайк, а также подписываемся на наши странички в соц. сетях!

Прим. В ролике электронный аналог переменного резистора настроен на 10 кОм. Используемый мультиметр Bside ADM01 имеет автоматическое переключение диапазонов и при их переключении не всегда слету определяет текущее сопротивление схемы. 

Вконтакте

Facebook

Twitter

Одноклассники

comments powered by HyperComments

diodnik.com

Электронный резистор

Схемы для измерений

Для тестирования различных схем под нагрузкой радиолюбителю часто необходим большой магазин резисторов разных номиналов и, соответственно, различной мощности. Избавиться от громоздкого набора испытательных сопротивлений вам поможет электронный резистор, схема которого представлена ниже.

В частности, это схема поможет настроить блок питания: узнать при какой нагрузке растут пульсации, изменяется значение выходного напряжения, поможет настроить вам электронную защиту от перегрузки и т.д.Схема эквивалента нагрузки очень проста. Основной элемент схемы транзистор MOSFET-N. Потребляемый ток регулируется путем изменения напряжения на затворе с помощью потенциометра R2. Сопротивление МОП-транзистора изменяется в зависимости от напряжения на затворе. Напряжение на входе потенциометра стабильно благодаря стабилитрону VD1.

Схема простого эквивалента нагрузки

электронный балласт

Для того, чтобы проверить источник с небольшим выходным напряжением, вы должны использовать logic MOSFET (MOSFET предназначен для переключения с логического уровня). Он имеет более низкое значение порогового напряжения и позволяет проверить источники питания с напряжением до 4 В. Для логических транзисторов подходит стабилитрон на 5 В , для классического MOSFET - на 9 В. MOSFETы должны быть размещены на большом радиаторе. Кратковременная нагрузка для транзистора в корпусе TO220 может достигать 100 Вт. Постоянно он может работать с нагрузкой до 50 Вт, при радиаторе большого размера. Этот электронный балласт работает в диапазоне входного напряжения 4 - 25 В. Логические транзисторы имеют, как правило, максимальное напряжение между DS-выводами- 30В .

 

radiopolyus.ru

Эквивалент нагрузки | Все своими руками

Опубликовал admin | Дата 25 июня, 2014

     Для проверки, регулировки, замера параметров мощных блоков питания, преобразователей, стабилизаторов и т.д. необходима соответствующая нагрузка. И такая нагрузка должна быть обязательно регулируемой. Можно конечно из мощных резисторов, типа ПЭЛ, спаять магазин сопротивлений, но это будет очень громоздко.

     На рисунке 1 показана схема электронного потенциометра (переменного резистора). Приемником всей энергии, подаваемой с проверяемого источника питания, является мощный транзистор VT1. В исходной схеме вместо современного составного транзистора КТ825А использовался транзистор П210ШОС и транзистор П214А, включенных по схеме составного или по другому, по схеме Дарлингтона. Сейчас более совершенные транзисторы, поэтому применяя принудительное охлаждение, можно собрать устройство небольших габаритов.

Электронный потенциометр,shema2

     Схема не является стабилизатором тока и ведет себя, как переменный резистор. Т.е. при изменении напряжения, поданного на электронный потенциометр (далее ЭП), ток, протекающий через схему, будет меняться.     Схема работает следующим образом. После подачи напряжения на ЭП через транзистор VT1 и резистор R1 потечет ток нагрузки. При прохождении тока через R1, на нем будет создаваться падение напряжения U1, которое подается на неинвертирующий вход операционного усилителя DA1. И как только это напряжение станет чуть больше напряжения U2, выставленного переменным резистором R2 и подаваемого на инвертирующий вход, на выходе ОУ появится сигнал, препятствующий дальнейшему увеличению тока коллектора транзистора VT1. Схема будет находиться в установившемся режиме. Теперь, например, начнем увеличивать подаваемое на ЭП напряжение, будет увеличиваться и ток, протекающий через делитель напряжения R2,R3, а это вызовет увеличение падения напряжения на резисторе R2 и в свою очередь увеличение напряжения U2. Оно станет больше U1 и ОУ приоткроет VT1 до такого состояния, при котором ток, проходящий через него (VT1) и R1, создаст на резисторе R1 падение напряжения примерно равного напряжению U2. При уменьшении напряжения на ЭП, ток Iнагр через него будет уменьшаться.

     Теперь о номиналах резисторов делителя напряжения R1 и R2, от которых зависят параметры ЭП. Используя этот пример, вы сами потом приспособите эту схему под свои нужды. И так резистор R2 находится в нижнем по схеме положении и на ЭП подано напряжение 30В. Сперва находим ток делителя Iдел. Для этого напряжение, поданное на ЭП — +U, делим на сумму R1,R2. Получаем Iдел = +U/R1 + R2 = 30/330 + 10000 = 0,0029А. Находим падение напряжения на R2, U2 = Iдел ? R2 = 0,0029 ? 330 = 0,958В. Примерно один вольт. Значит ОУ откроет транзисторы до такой степени, что через R1 потечет ток, создающий на нем падение напряжения примерно равное 0,958В и величина этого тока будет равна Iнагр = U1/R1 = 0,958/0,1 = 9,58А. При таком токе в десять ампер и напряжении коллектор — эмиттер в 30 вольт, на транзисторе выделится мощность в виде тепла, равная триста ватт! Наш подопечный сдохнет от теплового пробоя так быстро, что глазом моргнуть не успеем. Я специально взял такой пример, чтобы вы всегда были внимательны к своим действиям по отношению к величинам тока и напряжения. Для этого в схему введены амперметр и вольтметр.Как рассчитать шунт, formula

Как рассчитать добавочное сопротивление Rдобав 1 для амперметра (в качестве шунта в данной схеме амперметра используется резистор R1, падение напряжения на котором будет явно превышать необходимое.) для вашей измерительной головки и величину добавочного сопротивления для вольтметра Rдобав 2 можно узнать… Хотя давайте прямо здесь. И так смотрим формулу 1 и подставляем в нее свои данные. У меня они такие:

Сопротивление измерительной головки амперметра …………………… 1200 Ом.Ток полного отклонения стрелки …………………………………………… 100мкАМаксимальное измеряемое напряжение …………………………………… 1 В

     Надеюсь понятно, почему 1В. Uизмеряемое = Iнагр ? R1 = 10А ? 0,1 Ом = 1В. Rдобав 1 = (1В — 0,0001А?1200) / 0,0001А = 8800Ом. Выбираем триммер с сопротивлением 10кОм. Сопротивление Rдобав 2 определите сами. Теперь интересно, а какой ток через ЭП можно пропустить, если напряжение на его входе = 30В, а транзистор VT1 имеет максимально допустимую мощность с теплоотводом — 125 ватт. При таком напряжении коллектор – эмиттер и максимальной мощности транзистор может выдержать ток W/U = 125/30 ? примерно четыре ампера. Это с хорошим радиатором, если взять, что на каждые 10 ватт тепловой мощности необходим радиатор с площадью поверхности 100… 150см?, получается, что в нашем случае радиатор должен иметь площадь S = 125/10?100 = 1250см?. Это минимум. Конечно, лучше применить еще и обдув. Минимальное напряжение, подаваемое на ЭП равно примерно десяти вольтам, это минимальное напряжение работоспособности операционного усилителя. И максимальное напряжение = 30В, тоже ограничено рабочим напряжение микросхемы DA1. Вот вроде и все. Что не понято – на форум. Успехов. К.В.Ю.

Обсудить эту статью на - форуме "Радиоэлектроника, вопросы и ответы".

Просмотров:11 948

www.kondratev-v.ru

Когда не помогает ЦАП. Цифровые потенциометры в деталях. Часть первая / Хабр

Прогресс не обошёл стороной не только велосипед. Сегодня традиционные переменные и подстроечные резисторы в очень многих приложениях уступают место цифровым сопротивлениям. В англоязычных источниках их называют digital potentiometer, RDAC или digiPOT. Область применения этих устройств гораздо шире регулировки уровня звукового сигнала. В частности они приходят на помощь в очень многих случаях, когда требуется изменять параметры обратной связи, что трудно реализовать с помощью традиционных ЦАП.

Особенно эффективно их применение в связке с операционными усилителями. Так можно получить регулируемые усилительные каскады, преобразователи разного рода величин, фильтры, интеграторы, источники напряжения и тока и многое многое другое. Словом эти очень недорогие и компактные устройства могут быть полезными каждому разработчику электроники и радиолюбителю…

Изначально я хотел написать краткую статью, но в результате углубленного изучения темы материал с трудом уместился в две части. Сегодня я постараюсь рассказать об архитектуре данных устройств, их возможностях, ограничениях использования и тенденциях развития. В заключении вскользь затрону тему областей применения, поскольку конкретные примеры практической реализации схем на их основе будут рассмотрены во второй части. МНОГО примеров!

Лично я за последние пять лет с успехом применял цифровые сопротивления в нескольких своих разработках, надеюсь что данный цикл статей окажется полезным для многих и поможет вам решать многие задачи более изящно и просто, чем сегодня. Людям, далёким от разработки электроники данная статья может просто расширить кругозор, показав как эволюционируют под натиском цифровых технологий даже такие простейшие вещи, как переменные резисторы.

P.S.Так получилось, что уже вышла ещё одна статья из этой серии и в ней пример всего один, зато подробно разобранный. Для остальных обещанных примеров придётся писать третью.

Архитектура.
Для того, чтобы понять как работает данное устройство обратимся к функциональной схеме. На ней изображена аналоговая часть цифрового 8 битного сопротивления.

Основа прибора — 255 резисторов одинакового номинала и выполненные по технологии КМОП двунаправленные электронных ключи. Цифровое значение в интервале 0-255 записывается в регистр с которого подаётся на дешифратор. В зависимости от значения, сохранённого в регистре, срабатывает один из ключей, подключающий средний вывод W к выбранной точке в линейной матрице сопротивлений Rs. Ещё два ключа служат для подключения крайних выводов А и В. С их помощью прибор может переходить в неактивный режим.

Выводы А и В — аналоги крайних выводов переменного сопротивления, W — среднего вывода к которому у обычных переменных резисторов крепится движок.

Возможные схемы включения также аналогичны традиционным переменным сопротивлениям…

Рассмотрим как устанавливается требуемое сопротивление на примере 10 килоомного резистора. Для начала вычислим значение каждого из резисторов сборки, необходимых для формирования такого сопротивления Rs=10000/256=39,06 Oм. Допустим, мы пытаемся регулировать сопротивление между выводами W и B. Для получения нуля запишем это значение в управляющий регистр, но вместо желаемого нуля получим сопротивление в 100 Ом. Почему? Дело в том, что каждый из контактов прибора имеет своё внутреннее сопротивление и в рассматриваемом случае оно равно 50 Ом, поэтому и минимальное значение, которое можно получить с помощью данного потенциометра равно не нулю, а ста Омам — сопротивлению контактов W и B. Записав в регистр единицу получим 50+50+39=139 Ом.

В общем случае вычислить сопротивление между выводами W и B в зависимости от значения регистра D можно по формуле:

где:

  • D — значение регистра от 0 до 255
  • Rab — номинальное сопротивление
  • Rw — сопротивление одного контакта
Нетрудно догадаться что сопротивление между выводами W и А вычисляется как
Интерфейсы подключения.
Рассмотрим теперь функциональную диаграмму всего устройства, имеющего интерфейс I2C.

Тут некоторые вопросы может вызвать только вывод AD0. Он предназначен для возможности применения в одном канале I2C одновременно двух потенциометров. В зависимости от того, находится ли на нём логический ноль или единица, меняется адрес устройства на шине I2C. Схема подключения двух микросхем на одну шину показана ниже.

Кроме интерфейса I2C, для управления данными приборами часто используется SPI интерфейс. В этом случае также существует возможность управления несколькими устройствами по одной шине. Для этого они объединяются в цепочку. Например так:

В данном режиме буферный регистр записи значений работает как сдвиговый. Каждый новый бит поступает на вход DIN и по стробу с SCLK записывается в его младший разряд. Одновременно бит старшего разряда выходит наружу через вывод SDO и переходит в следующий прибор в цепочке. После того, как записана информация во все устройства, поступает импульс стробирования SYNC, по которому новые значения регистров всех приборов входящих в цепочку перезаписывается из буферного в рабочий регистрор. Очевидный недостаток подобного решения — не существует способа записать информацию в отдельно взятый прибор. Для любого изменения значений требуется обновить содержание регистров во всей цепочке.

Для решения подобного рода проблем, а так же экономии конечной цены решения изготавливают микросхемы, включающие в свой состав два, четыре и даже 6 цифровых сопротивлений одновременно.

Рабочие напряжение и ток
Пожалуй, самым существенным недостатком первых разработок было ограниченное напряжение, допустимое на выводах. Оно не должно превышать напряжения питания которое могло лежать в диапазоне от 2.7 до 5.5В, а главное не могло уходить в отрицательную область, из-за чего применение микросхем ограничивалось устройствами с однополярным питанием. Первым делом инженеры решили проблему двуполярности. Так появились приборы, способные работать как от однополярного напряжения вплоть до 5,5 Вольт, так и поддерживающие режим двуполярного питания вплоть до ± 2.75В. Затем стали появляться версии с максимальным питанием ±5.5 и даже ±16,5(до 33 вольт однополярного у AD5291/5292). Конечно по этому параметру традиционные сопротивления до сих пор сильно выигрывают, но для подавляющего большинства схем и 33 вольт вполне достаточно.

Тем не менее, какое бы максимальное напряжение не поддерживал прибор, в случае если имеется возможность его выхода за пределы допустимого, следует применить хотя бы простейшую защиту с помощью диодов или супрессоров.

Ещё одной серьёзной проблемой является низкий максимальный рабочий ток цифровых сопротивлений, который обусловлен в первую очередь их малыми размерами. Без риска деградации с течением времени средний постоянный ток для большинства моделей не должен превышать 3 мА. В случае, если протекающий ток имеет импульсный характер, его максимальное значение может быть выше.

Борьба за точность. Технология управляемого хаоса
К сожалению, существующая технология изготовления допускает возможность отклонения сопротивления интегральных резисторов, применяемыx в цифровых сопротивлениях, вплоть до 20 процентов от номинала. Однако, внутри одной партии и тем более одного конкретного прибора разница сопротивлений не превышает 0.1%. Для того, чтобы повысить точность установки, производитель стал измерять сопротивление резисторов как минимум на каждой пластине и прописывать в энергонезависимую память каждой из микросхем не номинальное, а реальное сопротивление, которое получилось в ходе производства, с точностью до 0.01 процента. Подобный механизм позволяет в частности в микросхемах AD5229/5235 вычислить реальную точность установки сопротивления c погрешностью недостижимой даже в многооборотных подстроечных резисторах — 0.01 процент. Основываясь на этом можно скорректировать операцию декодирования цифрового кода в сопротивление. Предположим, что элементарное сопротивление имеет значение 100 Ом. Тогда, чтобы выставить сопротивление в 1K вы устанавливаете в цифровом регистре 10. Но если в реальном приборе сопротивления имеют отклонение от номинала в большую сторону и равны 110 Ом, то при уровне 10 вы получите 1,1K. Однако, считав реальное значение сопротивления микроконтроллер может пересчитать код и подаст в действительности на дешифратор вместо десяти код 9. Тогда мы получим в реальности 9*110= 990 Ом.

Кроме этого, AD запатентовала технологию калибровки значения сопротивлений с точностью 1%. К сожалению, я так и не смог найти информации каков её механизм работы.

Для увеличения дискретности установки сопротивления были разработаны приборы с 10 битным дешифратором, обеспечивающие 1024 шага регулировки. Дальнейшее увеличение этого параметра можно достичь используя последовательное или параллельное соединение двух цифровых сопротивлений с разным номиналом.

Температурная стабильность
Тут всё совсем не плохо. Применение резисторов, изготавливаемых по плёночным технологиям позволяет достичь уровня дрейфа не превышающего 35ppm/°C (0,0035%). Существуют приборы с термокомпенсацией, температурный дрейф которых находится на уровне 10ppm/°C. По этому параметру цифровые сопротивления превосходят многие движковые аналоги. Для приложений, в которых данный параметр не актуален, можно выбирать более дешёвые приборы с полупроводниковыми резисторами у которых дрейф находится на уровне 600 ppm/°C.

Рабочий температурный диапазон большинства приборов от ADI находится в пределах от -40°C до +125°C, что достаточно для подавляющего большинства приложений.

Ряд доступных сопротивлений.
Конечно, тут не наблюдается такого разнообразия как у традиционных движковых резисторов, тем не менее есть из чего выбрать. Таблица ниже иллюстрирует зависимость доступных сопротивлений от разрядности прибора.

Искажение сигнала
Основные искажения, сигнала вносимые цифровыми усилителями можно разделить на два класса.
  • Гармонические искажения или на западный манер total harmonic distortion (THD).

Эти искажения возрастают с увеличением приложенного напряжения. Получить представление о их типичных значениях можно из следующей таблицы, составленной для микросхем AD9252…

В отдельных случаях этот вид искажений может возрастать до -60 dB

  • Искажения вызванные нелинейностью АЧХ.
Контактные площадки, электронные ключи и сами элементарные сопротивления имеют конечную паразитную ёмкость. В результате цифровые сопротивления являются своеобразным фильтром ФНЧ и на высоких частотах их сопротивление сигналу увеличивается.

Влияние этого эффекта возрастает с увеличением сопротивления прибора. В таблице ниже показано на какой частоте наблюдается ослабление сигнала на 3 децибела для разных сопротивлений разных номиналов.

Для большей наглядности приведу ещё графики зависимости передачи сигнала от установленного уровня сопротивления для микросхем AD5291 с разными номиналами 20 и 100 килоом.

Таким образом, получается что чем выше номинал сопротивления, тем ниже его рабочая частота.

“Фишечки” эволюции
Производители пытаются сделать работу с прибором наиболее комфортной, изобретая разные приятные мелочи. В результате цифровые сопротивления обзавелись внутренней энергонезависимой памятью, как однократно, так и многократно программируемой.

Главное её предназначение — хранения начального значения сопротивления, которое автоматически устанавливается сразу после включения питания. Первые модели электронных резисторов устанавливались при подаче питания в среднее положение, потом появилась дополнительная ножка для сброса в ноль, затем уровень стало можно задавать с помощью записанного в память значения. В наиболее продвинутых моделях в память можно записать несколько предустановленных значений, между которыми потом пользователь может быстро переключаться нажатием кнопок.

Кстати о кнопках — в некоторых моделях добавили две кнопочки для пошагового увеличения / уменьшения сопротивления.

Кроме этого, появился интерфейс для подключения энкодеров.

Что бы ещё улучшить?
Можно пофантазировать в каком направлении будет развиваться прогресс в производстве цифровых сопротивлений. Для достижения большей точности может измениться система коммутации.

Например, добавив в традиционную схему всего одно сопротивление в параллельном включении, ну хорошо, два. Ещё одно в верхнее плечо для симметрии — можно увеличить точность установки сопротивлений в два раза! Объединение же в одной корпусе двух приборов даст возможность увеличения дискретности и точности в несколько раз.

Введение в корпус простейшего микроконтроллера, управляющего дишифратором позволит на основе реального значения полученных сопротивлений создать программу переключения для установки сопротивления прибора с очень большой точностью — 0.1% и выше. Интегрировав в такие приборы датчик температуры можно ввести компенсацию для сохранения линейности в очень широком температурном диапазоне. Возможно появление аналогов частотнокомпенсированных сопротивлений для HiFi аппаратуры, которые будут представлять из себя несколько сопротивлений в одном корпусе. Одно из них будет использоваться для регулировки уровня громкости, а другие для частотной компенсации.

Области применения
Конкретные схемотехнические решения на основе цифровых сопротивлений я приведу в следующей части статьи, пока же просто рассмотрим области применения.

Конечно, прежде всего приходит на ум усилители с регулируемым коэффициентом усиления.

В результате повышения точности установки значений, стало возможным применение электронных сопротивления в схемах управления уровнем усиления инструментальных усилителей.

Автоматическое или программное изменение контрастности жидкокристаллического индикатора можно организовать с помощью электронного сопротивления номиналом 10 Килоом.

На основе цифровых сопротивлений легко реализовывать управляемые фильтры. Фильтры высоких порядков часто требуют по несколько задающих резисторов одинаковых номиналов. Это очень удобно реализовать с помощью приборов, содержащих несколько сопротивлений в одном корпусе, поскольку в этом случае мы получаем отличную повторяемость. На рисунке приведена упрощённая схема простейшего управляемого ФНЧ.

Логарифмический усилитель, со сравнительно высоким напряжением питания, на основе AD5292.

Программно управляемый стабилизатор напряжения.

Линейный ряд от ADI
В заключении приведу полную список доступных на сегодня электронных потенциометров от компании Analog Devices. При этом следует отметить, что подобные приборы выпускает далеко не только эта фирма. Например, MAXIM также давно делает неплохие микросхемы.

Для начала приборы, которые не поддерживают программирование пользователем.

В заключении программируемые приборы. При выбора конкретной модели стоит обращать внимание на то что они бывают как однократно программируемыми, так и поддерживающими репрограммирование. Причём большое количество циклов обеспечивают только микросхемы с памятью выполненной по технологии EEPROM.

На этом заканчиваю обзор. Следующая статья будет посвящена рассмотрению практических схем с применением цифровых сопротивлений.

P.S. Так получилось, что уже вышлаещё одна статья из этой серии и в ней пример всего один, зато подробно разобранный. Для остальных обещанных примеров придётся писать третью.

habr.com

Цифровые потенциометры | Радиолюбительские схемы

Цифровые потенциометры выполняют функцию регулирования, аналогичную той, что выполняет обычный потенциометр с механическим управлением.

Цифровые потенциометры

Сопротивление электронного регулятора изменяется дискретно (ступенчато) при подаче тактового импульса на счетный вход CLK микросхемы, а увеличение или уменьшение сопротивления определяется уровнем сигнала на входе UP/DOWN.

Помимо электронных аналогов многопозиционных механических переключателей, предназначенных для коммутации ограниченного количества электрических цепей, в последние годы появились и электронные аналоги механически управляемых (переменных) сопротивлений — электронные реостаты и потенциометры. Эти приборы, в отличие от механических аналогов, более компактны, надежны, имеют меньший уровень собственных шумов, допускают возможность одновременного дистанционного управления неограниченного числа регулировочных элементов. Пример использования вы можете видеть на рисунке выше.

В упрощенном виде электронные реостаты и потенциометры содержат набор (линейку) последовательно соединенных резисторов, коммутируемых электронными КМОП-ключами. Ключи эти обычно управляются:

  • либо подаваемым извне цифровым кодом;
  • либо формируемым непосредственно в микросхеме в зависимости от продолжительности подачи управляющего сигнала «вверх» или «вниз» на выводы управления, предназначенные для подключения к кнопкам управления или к источникам внешних управляющих сигналов «цифрового» уровня 1/0.

Примечание

Особенностью цифровых электронных реостатов и потенциометров является то, что изменение их электрического сопротивления осуществляется дискретно с заданным шагом по линейному, логарифмическому или иному, заданному пользователем, закону. Количество таких шагов обычно кратно двум, например, 32, 64, 128, 256 и т. д. При отключении/включении питания установленный до отключения на электронном потенциометре уровень (положение среднего вывода) запоминается.

Электронные потенциометры используют в технике связи, телевидении, персональных компьютерах, производственной и бытовой радиоэлектронной аппаратуре. Такие потенциометры применяют для узлов электронной настройки, многоканальной регулировки громкости/тембра звуковоспроизводящей аппаратуры, в системах автоматической регулировки усиления, перестраиваемых многозвенных фильтрах, схемах управления параметрами дисплеев и т. д.

Примечание.

Применение цифровых электронных потенциометров и реостатов при их работе на переменном токе ограничено областью рабочих частот, в пределах которой сигнал после прохождения через такой регулятор ослабляется не более чем на 3 дБ. Кроме того, поскольку в состав регуляторов входят нелинейные полупроводниковые элементы, повышается уровень нелинейных искажений. Этот уровень заметно возрастает при понижении напряжения питания микросхемы регулятора. Если в составе электронного устройства содержится несколько электронных потенциометров и реостатов, негативные последствия от их совместного использования суммируются.

Цифровые электронные реостаты и потенциометры фирмы Dallas Semiconductor (DS) — Maxim, например, DS1668 выпускаются с интерфейсом ручного управления (в виде кнопки) или в виде традиционной интегральной микросхемы — DS1669.

Расположение выводов микросхемы DS1669

Рис.1 Расположение выводов микросхемы DS1669:

RH — верхний; RW — средний; RL— нижний вывод потенциометра; +V,-V — питание; UC—вход управления перемещением вверх; DC — вниз

Эти микросхемы однотипны, имеют 64 ступени изменения сопротивления и выпускаются в стандартных номиналах 10, 50 и 100 кОм.

Типовые примеры управления электронными потенциометрами DS1669 при помощи одной или двух кнопок приведены на рис. 2 и рис. 3.

цифровой потенциометр

Рис.2. Типовая схема включения цифрового электронного потенциометра DS 1669 с однокнопочным управлением

Цифровой потенциометр

Рис.3. Типовая схема включения цифрового электронного потенциометра DS1669 с двухкнопочным управлением

Приведу далее сведения по основным разновидностям современных цифровых потенциометров.

DS1267 — двухканальный линейный цифровой потенциометр на номинал 10, 50 или 100 кОм. Имеет 256 позиций положения движка с управлением по последовательному трехпроводному интерфейсу. Напряжение питания 5(±5) В.

DS1666 — цифровой потенциометр, предназначенный для устройств звуковоспроизведения. Он имеет логарифмическую шкалу и 128 точек позиционирования. Напряжение питания 5 В. Значения сопротивлений резистивной матрицы может быть 10, 50, 100 кОм. Затухание сигнала с амплитудой до 5 В на уровне -3 дБ на частотах 1,1; 0,2 и 0,1 МГц, соответственно.

DS1667 — представляет собой сдвоенный цифровой потенциометр. Микросхема содержит также два широкополосных операционных усилителя. Каждый потенциометр формируется из 256 элементов, резисторы могут складываться, что дает возможность получать единственный потенциометр на 512 элементов.

DS1802 — сдвоенные потенциометры, обеспечивают регулирование уровня громкости и/или тембра звукозаписи в проигрывателях компакт-дисков, звуковых платах (картах) и иных электронных устройствах. Эти потенциометры имеют логарифмическую характеристику регулировки сопротивления. Весь диапазон в 45 кОм разбит на 65 позиций с приращением шага в 1 дБ. Для управления потенциометром (потенциометрами) от центрального процессора или иных микросхем используют трехпроводный последовательный интерфейс. Потенциометрами можно управлять и при помощи обычных кнопок.

Помимо перечисленных, известны также микросхемы цифровых потенциометров:

DS1800 — сдвоенный цифровой линейный потенциометр на 128 позиций номиналом 50 кОм с управлением по последовательному трехпроводному интерфейсу. Напряжение питания 3(5) В.

DS1801/DS1802 — сдвоенный цифровой потенциометр на 64 позиции, с логарифмической характеристикой, номиналом 50 кОм с управлением по последовательному трехпроводному интерфейсу. Напряжение питания 3(5) В.

DS1803 — сдвоенный линейный цифровой потенциометр на 256 позиций, номиналом 10, 50 или 100 кОм с управлением по последовательному двухпроводному интерфейсу. Напряжение питания 3(5) В.

DS1804 — энергонезависимый линейный цифровой потенциометр, который имеет 100 позиционных отводов, номиналом 10, 50 или 100 кОм. Напряжение питания 3(5) В.

DS1805 — линейный цифровой потенциометр на 256 позиций номиналом 10, 50 или 100 кОм с управлением по последовательному двухпроводному интерфейсу. Напряжение питания 3(5) В.

DS1806 — линейный шестиканальный цифровой потенциометр на 64 позиции номиналом 10, 50 или 100 кОм с управлением по последовательному трехпроводному интерфейсу. Напряжение питания 2,7—5,5 В.

DS1807 — сдвоенный цифровой потенциометр на 64 позиции каждый, с логарифмической характеристикой изменения сопротивлений для регулирования уровня звуковых сигналов. Работает с двухпроводным последовательным интерфейсом. Программно можно объединить два потенциометра в один. Напряжение питания 3(5) В.

DS1808 — сдвоенный логарифмический цифровой потенциометр на 32 позиции, номинал 45 кОм. Двухпроводное управление. Напряжение питания +4,5; ±13,2 В.

DS1809 — цифровой потенциометр на 64 позиции. Управление кнопками «вверх»/»вниз». Предусмотрена функция (авто)сохранения установленного уровня. Значения сопротивлений резистивной матрицы может быть 10, 50, 100 кОм. Затухание сигнала с амплитудой до 5 В на уровне —3 дБ на частотах 1,0; 0,2 и 0,1 МГц, соответственно. Напряжение питания +4,5—5,5 В.

DS1844 — счетверенный линейный потенциометр на 64 позиции с двухпроводным интерфейсом номиналом 10, 50 или 100 кОм с двухпроводным интерфейсом. Напряжение питания 2,7—5,5 В.

DS1845 — сдвоенный линейный потенциометр на 256 позиций с двухпроводным интерфейсом. Напряжение питания 3(5) В.

DS1847 и DS1848 — температурно-компенсированные двойные линейные цифровые потенциометры на 256 позиций номиналом 10 или 50 кОм. Напряжение питания +3,0—5,5 В.

Помимо перечисленных, известны также цифровые потенциометры DS1854—DS1859y DS1866—DS1870, DS2890, DS3902, DS3903—DS3905, DS3930, DS4301 и др., сведения о которых можно почерпнуть из справочной литературы или на сайтах фирм-производителей. Отметим также в порядке сопоставления некоторые цифровые потенциометры иных фирм [24.2—24.4].

MAX5160/MAX5161 — линейный цифровой потенциометр фирмы MAXIM-DALLAS на 32 позиции, номиналы 50,100,200 кОм. Напряжение питания от 2,7 до 5,5 В. Трехпроводный интерфейс.

МАХ5400—МАХ5405 — линейные цифровые потенциометры на 256 позиции. Напряжение питания от 2,7 до 5,5 В.

MAX5407 — цифровой потенциометр на 32 позиции с логарифмической шкалой, номинал 20 кОм. Область рабочих частот до 500 кГц. Напряжение питания от 2,7 до 5,5 В.

MAX5408—MAX5411 — сдвоенные цифровые потенциометры на 32 позиции с логарифмической шкалой, номинал 10 кОм. Напряжение питания 6т 2,7 до 3,6 В для MAX5408, MAX5409 и от 4,5 до 5,5 В для MAX5410, MAX5411.

MAX5413—MAX5415 — сдвоенные линейные цифровые потенциометры на 256 позиций, номинал, соответственно, 10, 50 и 100 кОм. Напряжение питания от 2,7 до 5,5 В.

Кроме перечисленных в линейке подобных изделий этой фирмы можно назвать микросхемы MAX5417—MAX5439, MAX5450—MAX5457, MAX5460—MAX5468, MAX5471—MAX5472, MAX5474—MAX5475, MAX5477—MAX5479, MAX5481—MAX5484, MAX5487— MAX5492 и др., каждая, из которых имеет индивидуальные отличия и развивает области применения цифровых потенциометров и способов их управления.

Так, например:

MAX5471, MAX5472, MAXS474, MAX5475 — энергонезависимые 32-х позиционные линейные цифровые потенциометры с последовательным трехпроводным интерфейсом. MAX5471/MAX5474 имеют сопротивление 50 кОм, a MAX5472/MAX5475 — 100 кОм. Напряжение питания от 2,7 до 5,25 В.

Упомянем также для сравнения некоторые цифровые потенциометры фирмы Analog Device [24.3].

AD5200/AD5201 — цифровые потенциометры номиналами 10,50 кОм на 256 и 33 позиции, соответственно.

AD5231/AD5235 — цифровые потенциометры на 1024 позиции.

AD5232 — цифровой двухканальный потенциометр на 256 позиций.

AD5234 — цифровой четырехканальный потенциометр на 64 позиции.

AD5291/AD5292 — цифровые потенциометры на 256/1024 позиции на номинал 20,50,100 кОм.

AD7376 — цифровой потенциометр на 128 позиций на номинал 10, 50, 100,1000 кОм.

AD8400/AD8402/AD8403 — 1, 2 или 4-х канальные цифровые потенциометры на 1,10,50 или 100 кОм, 256 позиций, с трехпроводным интерфейсом.

Цифровые программируемые потенциометры фирмы ON Semiconductor САТ5270 и САТ5271 — двухканальные цифровые потенциометры на 50 и 100 кОм для точной настройки с 256 ступенями регулирования и интерфейсом 12С.

Цифровые программируемые потенциометры фирмы Catalyst Semiconductor САТ5111 и САТ5113 [24.4] на 100 позиций при напряжении питания 2,5—6,0 В потребляют ток 0,1 мА.

Цифровые потенциометры

Рис.4. Эквивалентная схема электронного аттенюатора МС3340

Несколько иной принцип работы у другого управляемого извне прибора — электронного аттенюатора. Пример практической реализации одного из них — МС3340 фирмы Motorola приведен на рис. 4. Аттенюатор позволяет осуществлять дистанционное или непосредственное управление коэффициентом передачи (ослабления) сигнала до 80 дБ в полосе частот до 1 МГц. Напряжение питания аттенюатора — 9—18(20) В. Максимальное напряжение входного сигнала — до 0,5 В.

Типовая схема использования электронного аттенюатора МС3340 приведена на рис.5.

Цифровой потенциометр

Рис.5. Типовая схема включения электронного аттенюатора МС3340

Примечание.

Особое положение в ряду электрически регулируемых пассивных элементов занимает специализированная микросхема МАХ1474с электрически переключаемыми конденсаторами— аналог миниатюрного конденсатора переменной емкости, рис. 6.

Применение такой микросхемы вместо традиционных варикапов или конденсаторов переменной емкости предпочтительнее ввиду идентичности емкостных параметров микросхемы, синхронности изменения емкости при одновременном использовании нескольких аналогов управляемых конденсаторов, лучшей температурной стабильности.

Схема электирчески управляемого конденсатора переменной емкости

Примечание.

Возможная область применения микросхем с электрически переключаемыми конденсаторами— синхронная настройка колебательных контуров входных цепей радиоприемных устройств, фильтров промежуточной и иной частоты.

Управление батареей конденсаторов от встроенной схемы управления позволяет ступенчато с минимальным шагом в 0,22 пФ менять в 32 ступени ее емкость в пределах от 6,4 до 13,3 пФ на выводе СР относительно общего провода при заземленном выводе СМ.

Возможна эксплуатация конденсаторной батареи при подключении ее через выводы СР и СМ с изменением емкости в пределах от 0,42 до 10,9 пФ с шагом 0,34 пФ. Температурный коэффициент емкости управляемого конденсатора равен 3,3*10-5 1/град.

Напряжение питания микросхемы 2,7—5,5 В при потребляемом токе 10 мкА. Микросхему можно применять до частот в несколько сотен мегагерц. Так, эквивалентная добротность контура порядка 100 на частотах ниже 20 МГц падает с ростом частоты до 359 МГц в 10 раз.

Микросхемы МАХ1474 можно применять в узлах электронной настройки, в емкостных аттенюаторах, в генераторах и других радиоэлектронных устройствах.

Похожие радиосхемы и статьи:

eschemo.ru

ЭЛЕКТРОННЫЕ РЕОСТАТЫ И ПОТЕНЦИОМЕТРЫ С ЦИФРОВЫМ УПРАВЛЕНИЕМ В УСТРОЙСТВАХ НА МИКРОСХЕМАХ

Электронные реостаты и потенциометры с цифровым управлением выполняют функцию регулирования, аналогичную той, что выполняет обычный потенциометр с механическим управлением. Сопротивление электронного регулятора изменяется дискретно (ступенчато) при подаче тактового импульса на счетный вход CLK микросхемы, а увеличение или уменьшение сопротивления определяется уровнем сигнала на входе UP/DOWN.

Помимо электронных аналогов многопозиционных механических переключателей, предназначенных для коммутации ограниченного количества электрических цепей, в последние годы появились и электронные аналоги механически управляемых (переменных) сопротивлений — электронные реостаты и потенциометры. Эти приборы, в отличие от механических аналогов, более компактны, надежны, имеют меньший уровень собственных шумов, допускают возможность одновременного дистанционного управления неограниченного числа регулировочных элементов.

В упрощенном виде электронные реостаты и потенциометры содержат набор (линейку) последовательно соединенных резисторов, коммутируемых электронными КМОП-ключами. Ключи эти обычно управляются:

♦    либо подаваемым извне цифровым кодом;

*     либо формируемым непосредственно в микросхеме в зависимости от продолжительности подачи управляющего сигнала «вверх» или «вниз» на выводы управления, предназначенные для подключения к кнопкам управления или к источникам внешних управляющих сигналов «цифрового» уровня 1/0.

Примечание.

Особенностью цифровых электронных реостатов и потенциометров является то, что изменение их электрического сопротивления осуществляется дискретно с заданным шагом по линейному, логарифмическому или иному, заданному пользователем, закону. Количество таких шагов обычно кратно двум, например, ?2, 64, 128, 256 и т. д. При отключении/включении питания у’тановленный до

отключения на электронном потенциометре уровень (положение среднего вывода) запоминается.

Электронные потенциометры используют в технике связи, телевидении, персональных компьютерах, производственной и бытовой радиоэлектронной аппаратуре. Такие потенциометры применяют для узлов электронной настройки, многоканальной регулировки громкости/тембра звуковоспроизводящей аппаратуры, в системах автоматической регулировки усиления, перестраиваемых многозвенных фильтрах, схемах управления параметрами дисплеев и т. д.

Примечание.

Применение цифровых электронных потенциометров и реостатов при их работе на переменном токе ограничено областью рабочих частот, в пределах которой сигнал после прохождения через такой регулятор ослабляется не более чем на 3 дБ. Кроме того, поскольку в состав регуляторов входят нелинейные полупроводниковые элементы, повышается уровень нелинейных искажений. Этот уровень заметно возрастает при понижении напряжения питания микросхемы регулятора. Если в составе электронного устройства содержится несколько электронных потенциометров и реостатов, негативные последствия от их совместного использования суммируются.

Рис. 24.3. Типовая схема включения цифрового электронного потенциометра DS1669 с двухкнопочным управлением

Рис. 24.2. Типовая схема включения цифрового электронного потенциометра DS 1669 с однокнопочным управлением

Рис. 24.7. Расположение выводов микросхемы DS1669:

RH — верхний; Rw — средний; R^— нижний вывод потенциометра; +V,-V — питание; UC—вход управления перемещением вверх; DC — вниз

Цифровые электронные реостаты и потенциометры фирмы Dallas Semiconductor (DS) — Maxim, например, DS1668 выпускаются с интерфейсом ручного управления (в виде кнопки) или в виде традиционной интегральной микросхемы — DS1669, рис. 24.1 [24.1]. Эти микросхемы однотипны, имеют 64 ступени изменения сопротивления и выпускаются в стандартных номиналах 10, 50 и 100 кОм.

Типовые примеры управления электронными потенциометрами DS1669 при помощи одной или двух кнопок приведены на рис. 24.2 и рис. 24.3.

Приведу далее сведения по основным разновидностям современных цифровых потенциометров.

DS1267 — двухканальный линейный цифровой потенциометр на номинал 10, 50 или 100 кОм. Имеет 256 позиций положения движка с управлением по последовательному трехпроводному интерфейсу. Напряжение питания 5(±5) В.

DS1666 — цифровой потенциометр, предназначенный для устройств звуковоспроизведения. Он имеет логарифмическую шкалу и 128 точек позиционирования. Напряжение питания 5 В. Значения сопротивлений резистивной матрицы может быть 10, 50, 100 кОм. Затухание сигнала с амплитудой до 5 В на уровне -3 дБ на частотах 1,1; 0,2 и 0,1 МГц, соответственно.

DS1667 — представляет собой сдвоенный цифровой потенциометр. Микросхема содержит также два широкополосных операционных усилителя. Каждый потенциометр формируется из 256 элементов, резисторы могут складываться, что дает возможность получать единственный потенциометр на 512 элементов.

DS1802 — сдвоенные потенциометры, обеспечивают регулирование уровня громкости и/или тембра звукозаписи в проигрывателях компакт- дисков, звуковых платах (картах) и иных электронных устройствах. Эти потенциомеч ры имеют логарифмическую характеристику регулировки сопротивления. Весь диапазон в 45 кОм разбит на 65 позиций с приращением шага в 1 дБ. Для управления потенциометром (потенциометрами) от центрального процессора или иных микросхем используют трехпро- водный последовательный интерфейс. Потенциометрами можно управлять и при помощи обычных кнопок.

Помимо перечисленных, известны также микросхемы цифровых потенциометров:

DS1800 — сдвоенный цифровой линейный потенциометр на 128 позиций номиналом 50 кОм с управлением по последовательному трехпроводному интерфейсу. Напряжение питания 3(5) В.

DS1801/DS1802 — сдвоенный цифровой потенциометр на 64 позиции, с логарифмической характеристикой, номиналом 50 кОм с управлением по последовательному трехпроводному интерфейсу. Напряжение питания 3(5) В.

DS1803 — сдвоенный линейный цифровой потенциометр на 256 позиций, номиналом 10, 50 или 100 кОм с управлением по последовательному двухпроводному интерфейсу. Напряжение питания 3(5) В.

DS1804 — энергонезависимый линейный цифровой потенциометр, который имеет 100 позиционных отводов, номиналом 10, 50 или 100 кОм. Напряжение питания 3(5) В.

DS1805 — линейный цифровой потенциометр на 256 позиций номиналом 10, 50 или 100 кОм с управлением по последовательному двухпроводному интерфейсу. Напряжение питания 3(5) В.

DS1806 — линейный шестиканальный цифровой потенциометр на 64 позиции номиналом 10, 50 или 100 кОм с управлением по последовательному трехпроводному интерфейсу. Напряжение питания 2,7—5,5 В.

DS1807 — сдвоенный цифровой потенциометр на 64 позиции каждый, с логарифмической характеристикой изменения сопротивлений для регулирования уровня звуковых сигналов. Работает с двухпроводным последовательным интерфейсом. Программно можно объединить два потенциометра в один. Напряжение питания 3(5) В.

DS1808 — сдвоенный логарифмический цифровой потенциометр на 32 позиции, номинал 45 кОм. Двухпроводное управление. Напряжение питания +4,5; ±13,2 В.

DS1809 — цифровой потенциометр на 64 позиции. Управление кнопками «вверх»/»вниз». Предусмотрена функция (авто)сохранения установленного уровня. Значения сопротивлений резистивной матрицы может быть 10, 50, 100 кОм. Затухание сигнала с амплитудой до 5 J5 на уровне —3 дБ на частотах 1,0; 0,2 и 0,1 МГц, соответственно. Напряжение питания +4,5—5,5 В.

DS1844 — счетверенный линейный потенциометр на 64 позиции с двухпроводным интерфейсом номиналом 10, 50 или 100 кОм с двухпроводным интерфейсом. Напряжение питания 2,7—5,5 В.

DS1845 — сдвоенный линейный потенциометр на 256 позиций с двухпроводным интерфейсом. Напряжение питания 3(5) В.

DS1847 и DS1848 — температурно-компенсированные двойные линейные цифровые потенциометры на 256 позиций номиналом 10 или 50 кОм. Напряжение питания +3,0—5,5 В.

Помимо перечисленных, известны также цифровые потенциометры DS1854—DS1859, DS1866—DS1870, DS2890, DS3902, DS3903—DS3905, DS3930, DS4301 и др., сведения о которых можно почерпнуть из справочной литературы или на сайтах фирм-производителей. Отметим также в порядке сопоставления некоторые цифровые потенциометры иных фирм [24.2—24.4].

МАХ5160/МАХ5161 — линейный цифровой потенциометр фирмы ΜΑΧΙΜ-DALLAS на 32 позиции, номиналы 50,100,200 кОм. Напряжение питания от 2,7 до 5,5 В. Трехпроводный интерфейс.

МАХ5400—МАХ5405 — линейные цифровые потенциометры на 256 позиции. Напряжение питания от 2,7 до 5,5 В.

МАХ5407 — цифровой потенциометр на 32 позиции с логарифмической шкалой, номинал 20 кОм. Область рабочих частот до 500 кГц. Напряжение питания от 2,7 до 5,5 В.

МАХ5408—МАХ5411 — сдвоенные цифровые потенциометры на 32 позиции с логарифмической шкалой, номинал 10 кОм. Напряжение питания ότ 2,7 до 3,6 В для МАХ5408, МАХ5409 и от 4,5 до 5,5 В для МАХ5410, МАХ5411.

МАХ5413—МАХ5415 — сдвоенные линейные цифровые потенциометры на 256 позиций, номинал, соответственно, 10, 50 и 100 кОм. Напряжение питания от 2,7 до 5,5 В.

Кроме перечисленных в линейке подобных изделий этой фирмы можно назвать микросхемы МАХ5417—МАХ5439, МАХ5450—МАХ5457, МАХ5460—МАХ5468, МАХ5471—МАХ5472, МАХ5474—МАХ5475, МАХ5477—МАХ5479, МАХ5481—МАХ5484, МАХ5487— МАХ5492 и др„ каждая, из которых имеет индивидуальные отличия и развивает области применения цифровых потенциометров и способов их управления.

Так, например:

МАХ5471, МАХ5472, MAXS474, МАХ5475 — энергонезависимые 32-х позиционные линейные цифровые потенциометры с последовательным трехпроводным интерфейсом. МАХ5471/МАХ5474 имеют сопротивление 50 кОм, а МАХ5472/МАХ5475 — 100 кОм. Напряжение питания от 2,7 до 5,25 В.

Упомянем также для сравнения некоторые цифровые потенциометры фирмы Analog Device [24.3].

AD5200/AD5201 — цифровые потенциометры номиналами 10,50 кОм на 256 и 33 позиции, соответственно.

AD5231/AD5235 — цифровые потенциометры на 1024 позиции.

AD5232 — цифровой двухканальный потенциометр на 256 позиций.

AD5234 — цифровой четырехканальный потенциометр на 64 позиции.

AD5291/AD5292 — цифровые потенциометры на 256/1024 позиции на номинал 20,50,100 кОм.

AD7376 — цифровой потенциометр на 128 позиций на номинал 10, 50, 100, 1000 кОм.

AD8400/AD8402/AD8403 — 1, 2 или 4-х канальные цифровые потенциометры на 1,10,50 или 100 кОм, 256 позиций, с трехпроводным интерфейсом.

Цифровые программируемые потенциометры фирмы ON Semiconductor САТ5270 и САТ5271 – двухканальные цифровые потенциометры на 50 и 100 кОм для точной настройки с 256 ступенями регулирования и интерфейсом 12С.

Цифровые программируемые потенциометры фирмы Catalyst Semiconductor САТ5111 и САТ5113 [24.4] на 100 позиций при напряжении питания 2,5—6,0 В потребляют ток 0,1 мА.

Несколько иной принцип работы у другого управляемого извне прибора — электронного аттенюатора. Пример практической реализации одного из них — МС3340 фирмы Motorola приведен на рис. 24.4. Аттенюатор позволяет осуществлять дистанционное или непосредственное управление коэффициентом передачи (ослабления) сигнала до 80 дБ в полосе частот до 1 МГц. Напряжение питания аттенюатора — 9—18(20) В. Максимальное напряжение входного сигнала — до 0,5 В.

Типовая схема использования электронного аттенюатора МС3340 приведена на рис. 24.5.

Примечание.

Особое положение в ряду электрически регулируемых пассивных элементов занимает специализированная микросхема МАХ1474с электрически переключаемыми конденсаторами— аналог миниатюрного конденсатора переменной емкости, рис. 24.6 [24.2].

Рис. 24.5. Типовая схема включения электронного аттенюатора МС3340

Рис. 24.4. Эквивалентная схема электронного аттенюатора МС3340

Применение такой микросхемы вместо традиционных варикапов или конденсаторов переменной емкости предпочтительнее ввиду идентичности емкостных параметров микросхемы, синхронности изменения емкости при одновременном использовании нескольких аналогов управляемых конденсаторов, лучшей температурной стабильности.

Примечание.

Рис. 24.6. Схема электрически управляемого конденсатора переменной емкости на м икросхеме МАХ 1474

Возможная область применения микросхем с электрически переключаемыми конденсаторами— синхронная настройка колебательных контуров входных цепей радиоприемных устройств, фильтров промежуточной и иной частоты.

Управление батареей конденсаторов от встроенной схемы управления позволяет ступенчато с минимальным шагом в 0,22 пФ менять в 32 ступени ее емкость в пределах от 6,4 до 13,3 пФ на выводе СР относительно общего провода при заземленном выводе СМ.

Возможна эксплуатация конденсаторной батареи при подключении ее через выводы СР и СМ с изменением емкости в пределах от 0,42 до 10,9 пФ с шагом 0,34 пФ. Температурный коэффициент емкости управляемого конденсатора равен 3,3·10“5 1 /град.

Напряжение питания микросхемы 2,7—5,5 В при потребляемом токе 10 мкА. Микросхему можно применять до частот в несколько сотен мегагерц. Так, эквивалентная добротность контура порядка 100 на частотах ниже 20 МГц падает с ростом частоты до 359 МГц в 10 раз.

Микросхемы МАХ1474 можно применять в узлах электронной настройки, в емкостных аттенюаторах, в генераторах и других радиоэлектронных устройствах.

Шустов М. А., Схемотехника. 500 устройств на аналоговых микросхемах. — СПб.: Наука и Техника, 2013. —352 с.

nauchebe.net

Обозначение на схемах радиодеталей

Содержание:
  1. Резисторы
  2. Полупроводники
  3. Конденсаторы
  4. Диоды и стабилитроны
  5. Транзисторы
  6. Буквенные обозначение на схемах радиодеталей
  7. Видеоурок: условные обозначения на схемах

Начинающие радиолюбители нередко сталкиваются с такой проблемой, как обозначение на схемах радиодеталей и правильное прочтение их маркировки. Основная трудность заключается в большом количестве наименований элементов, которые представлены транзисторами, резисторами, конденсаторами, диодами и другими деталями. От того, насколько правильно прочитана схема, во многом зависит ее практическое воплощение и нормальная работа готового изделия. 

Резисторы

К резисторам относятся радиодетали, обладающие строго определенным сопротивление протекающему через них электрическому току. Данная функция предназначена для понижения тока в цепи. Например, чтобы лампа светила менее ярко, питание на нее подается через резистор. Чем выше сопротивление резистора, тем меньше будет свечение лампы. У постоянных резисторов сопротивление остается неизменным, а переменные резисторы могут изменять свое сопротивление от нулевого значения до максимально возможной величины.

Каждый постоянный резистор обладает двумя основными параметрами – мощностью и сопротивлением. Значение мощности указывается на схеме не буквенными или цифровыми символами, а с помощью специальных линий. Сама мощность определяется по формуле: P = U x I, то есть равна произведению напряжения и силы тока. Данный параметр имеет важное значение, поскольку тот или иной резистор может выдержать лишь определенное значение мощности. Если это значение будет превышено, элемент просто сгорит, так как во время прохождения тока по сопротивлению происходит выделение тепла. Поэтому на рисунке каждые линии, нанесенные на резистор, соответствуют определенной мощности.

Существуют и другие способы обозначения резисторов на схемах:

  1. На принципиальных схемах обозначается порядковый номер в соответствии с расположением (R1) и значение сопротивления, равное 12К. Буква «К» является кратной приставкой и обозначает 1000. То есть, 12К соответствует 12000 Ом или 12 килоом. Если в маркировке присутствует буква «М», это указывает на 12000000 Ом или 12 мегаом.
  2. В маркировке с помощью букв и цифр, буквенные символы Е, К и М соответствуют определенным кратным приставкам. Так буква Е = 1, К = 1000, М = 1000000. Расшифровка обозначений будет выглядеть следующим образом: 15Е – 15 Ом; К15 – 0,15 Ом – 150 Ом; 1К5 – 1,5 кОм; 15К – 15 кОм; М15 – 0,15М – 150 кОм; 1М2 – 1,5 мОм; 15М – 15мОм.
  3. В данном случае используются только цифровые обозначения. Каждое включает в себя три цифры. Первые две из них соответствуют значению, а третья – множителю. Таким образом, к множителям относятся: 0, 1, 2, 3 и 4. Они означают количество нулей, добавляемых к основному значению. Например, 150 – 15 Ом; 151 – 150 Ом; 152 – 1500 Ом; 153 – 15000 Ом; 154 – 120000 Ом.

Постоянные резисторы

Название постоянных резисторов связано с их номинальным сопротивлением, которое остается неизменным в течение всего периода эксплуатации. Они различаются между собой в зависимости от конструкции и материалов.

Проволочные элементы состоят из металлических проводов. В некоторых случаях могут использоваться сплавы с высоким удельным сопротивлением. Основой для намотки проволоки служит керамический каркас. Данные резисторы обладают высокой точностью номинала, а серьезным недостатком считается наличие большой собственной индуктивности. При изготовлении пленочных металлических резисторов, на керамическое основание напыляется металл, обладающий высоким удельным сопротивлением. Благодаря своим качествам, такие элементы получили наиболее широкое распространение.

Конструкция угольных постоянных резисторов может быть пленочной или объемной. В данном случае используются качества графита, как материала с высоким удельным сопротивлением. Существуют и другие резисторы, например, интегральные. Они применяются в специфических интегральных схемах, где использование других элементов не представляется возможным.

Переменные резисторы

Начинающие радиолюбители нередко путают переменный резистор с конденсатором переменной емкости, поскольку внешне они очень похожи друг на друга. Тем не менее, у них совершенно разные функции, а также имеются существенные отличия в отображении на принципиальных схемах.

В конструкцию переменного резистора входит ползунок, вращающийся по резистивной поверхности. Его основной функцией является подстройка параметров, заключающаяся в изменении внутреннего сопротивления до нужного значения. На этом принципе основана работа регулятора звука в аудиотехнике и других аналогичных устройствах. Все регулировки осуществляются за счет плавного изменения напряжения и тока в электронных устройствах.

Основным параметром переменного резистора является сопротивление, способное изменяться в определенных пределах. Кроме того, он обладает установленной мощностью, которую должен выдерживать. Этими качествами обладают все типы резисторов.

На отечественных принципиальных схемах элементы переменного типа обозначаются в виде прямоугольника, на котором отмечены два основных и один дополнительный вывод, располагающийся вертикально или проходящих сквозь значок по диагонали.

На зарубежных схемах прямоугольник заменен изогнутой линией с обозначением дополнительного вывода. Рядом с обозначением ставится английская буква R с порядковым номером того или иного элемента. Рядом проставляется значение номинального сопротивления.

Соединение резисторов

В электронике и электротехнике довольно часто используются соединения резисторов в различных комбинациях и конфигурациях. Для большей наглядности следует рассматривать отдельный участок цепи с последовательным, параллельным и смешанным соединением.

При последовательном соединении конец одного резистора соединяется с началом следующего элемента. Таким образом, все резисторы подключаются друг за другом, и по ним протекает общий ток одинакового значения. Между начальной и конечной точкой существует только один путь для протекания тока. С возрастанием количества резисторов, соединенных в общую цепь, происходит соответствующий рост общего сопротивления.

Параллельным считается такое соединение, когда начальные концы всех резисторов объединяются в одной точке, а конечные выходы – в другой точке. Течение тока происходит по каждому, отдельно взятому резистору. В результате параллельного соединения с увеличением числа подключенных резисторов, возрастает и количество путей для протекания тока. Общее сопротивление на таком участке уменьшается пропорционально количеству подключенных резисторов. Оно всегда будет меньше, чем сопротивление любого резистора, подключенного параллельно.

Чаще всего в радиоэлектронике используется смешанное соединение, представляющее собой комбинацию параллельного и последовательного вариантов.

На представленной схеме параллельно соединяются резисторы R2 и R3. Последовательное соединение включает в себя резистор R1, комбинацию R2 и R3 и резистор R4. Для того чтобы рассчитать сопротивление такого соединения, вся цепь разбивается на несколько простейших участков. После этого значения сопротивлений суммируются и получается общий результат.

Полупроводники

Стандартный полупроводниковый диод состоит из двух выводов и одного выпрямляющего электрического перехода. Все элементы системы объединяются в общем корпусе из керамики, стекла, металла или пластмассы. Одна часть кристалла называется эмиттером, в связи с высокой концентрацией примесей, а другая часть, с низкой концентрацией, именуется базой. Маркировка полупроводников на схемах отражает их конструктивные особенности и технические характеристики.

Для изготовления полупроводников используется германий или кремний. В первом случае удается добиться более высокого коэффициента передачи. Элементы из германия отличаются повышенной проводимостью, для которой достаточно даже невысокого напряжения.

В зависимости от конструкции, полупроводники могут быть точечными или плоскостными, а по технологическим признакам они бывают выпрямительными, импульсными или универсальными.

Конденсаторы

Конденсатор представляет собой систему, включающую два и более электродов, выполненных в виде пластин – обкладок. Они разделяются диэлектриком, который значительно тоньше, чем обкладки конденсатора. Все устройство имеет взаимную емкость и обладает способностью к сохранению электрического заряда. На простейшей схеме конденсатор представлен в виде двух параллельных металлических пластин, разделенных каким-либо диэлектрическим материалом.

На принципиальной схеме рядом с изображением конденсатора указывается его номинальная емкость в микрофарадах (мкФ) или пикофарадах (пФ). При обозначении электролитических и высоковольтных конденсаторов, после номинальной емкости указывается значение максимального рабочего напряжения, измеряемого в вольтах (В) или киловольтах (кВ).     

Переменные конденсаторы

Для обозначения конденсаторов с переменной емкостью используются два параллельных отрезка, которые пересекает наклонная стрелка. Подвижные пластины, подключаемые в определенной точке схемы, изображаются в виде короткой дуги. Возле нее проставляется обозначение минимальной и максимальной емкости. Блок конденсаторов, состоящий из нескольких секций, объединяется с помощью штриховой линии, пересекающей знаки регулировки (стрелки).

Обозначение подстроечного конденсатора включает в себя наклонную линию со штрихом на конце вместо стрелки. Ротор отображается в виде короткой дуги. Другие элементы – термоконденсаторы обозначаются буквами СК. В его графическом изображении возле знака нелинейной регулировки проставляется температурный символ.

Постоянные конденсаторы

В принципиальных электрических схемах широко используются графические обозначения конденсаторов с постоянной емкостью. Они изображаются в виде двух параллельных отрезков и выводов из середины каждого из них. Возле значка проставляется буква С, после нее – порядковый номер элемента и с небольшим интервалом – числовое обозначение номинальной емкости.

При использовании в схеме конденсатора с ориентировочной емкостью, вместо его порядкового номера наносится звездочка. Значение номинального напряжения указывается лишь для цепей с высоким напряжением. Это касается всех конденсаторов, кроме электролитических. Цифровой символ напряжения проставляется после обозначения емкости.

Соединение многих электролитических конденсаторов требует соблюдения полярности. На схемах для обозначения положительной обкладки используется значок «+» либо узкий прямоугольник. При отсутствии полярности узкими прямоугольниками помечаются обе обкладки.

Диоды и стабилитроны

Диоды относятся к простейшим полупроводниковым приборам, функционирующим на основе электронно-дырочного перехода, известного как p-n-переход. Свойство односторонней проводимости наглядно передается на графических обозначениях. Стандартный диод изображается в виде треугольника, символизирующего анод. Вершина треугольника указывает направление проводимости и упирается в поперечную черту, обозначающую катод. Все изображение пересекается по центру линией электрической цепи.

Для маркировки диодов используется буквенное обозначение VD. Оно отображает не только отдельные элементы, но и целые группы, например, диодные мосты. Тип того или иного диода указывается возле его позиционного обозначения.

Базовый символ применяется и для обозначения стабилитронов, представляющих собой полупроводниковые диоды с особыми свойствами. В катоде присутствует короткий штрих, направленный в сторону треугольника, символизирующего анод. Данный штрих располагается неизменно, независимо от положения значка стабилитрона на принципиальной схеме.

Транзисторы

У большинства радиоэлектронных компонентов имеется лишь два вывода. Однако такие элементы как транзисторы оборудованы тремя выводами. Их конструкции отличаются разнообразными типами, формами и размерами. Общие принципы работы у них одинаковые, а небольшие отличия связаны с техническими характеристиками конкретного элемента.

Транзисторы используются преимущественно в качестве электронных коммутаторов для включения и выключения различных устройств. Основное удобство таких приборов заключается в возможности коммутировать большое напряжение с помощью источника малого напряжения.

По своей сути каждый транзистор является полупроводниковым прибором, с помощью которого генерируются, усиливаются и преобразуются электрические колебания. Наибольшее распространение получили биполярные транзисторы с одинаковой электропроводностью эмиттера и коллектора.

На схемах они обозначаются буквенным кодом VT. Графическое изображение представляет собой короткую черточку, от середины которой отходит линия. Данный символ обозначает базу. К ее краям проводятся две наклонные линии под углом 600, отображающие эмиттер и коллектор.

Электропроводность базы зависит от направления стрелки эмиттера. Если она направлена в сторону базы, то электропроводность эмиттера – р, а у базы – n. При направлении стрелки в противоположную сторону, эмиттер и база меняют электропроводность на противоположное значение. Знание электропроводности необходимо для правильного подключения транзистора к источнику питания.

Для того чтобы обозначение на схемах радиодеталей транзистора было более наглядным, оно помещается в кружок, означающий корпус. В некоторых случаях выполняется соединение металлического корпуса с одним из выводов элемента. Такое место на схеме отображается в виде точки, проставляемой там, где вывод пересекается с символом корпуса. Если же на корпусе имеется отдельный вывод, то линия, обозначающая вывод, может подсоединяться к кружку без точки. Возле позиционного обозначения транзистора указывается его тип, что позволяет существенно повысить информативность схемы.

Буквенные обозначение на схемах радиодеталей

Основное обозначение

Наименование элемента

Дополнительное обозначение

Вид устройства

А

Устройство

АА

Регулятор тока

 

 

АК

Блок реле

 

 

AKS

Устройство

В

Преобразователи

ВА

Громкоговоритель

 

 

BF

Телефон

 

 

ВК

Датчик тепловой

 

 

BL

Фотоэлемент

 

 

ВМ

Микрофон

 

 

BS

Звукосниматель

С

Конденсаторы

СВ

Батарея конденсаторов силовая

 

 

CG

Блок конденсаторов зарядный

D

Интегральные схемы, микросборки

DA

ИС аналоговая

 

 

DD

ИС цифровая, логический элемент

Е

Элементы разные

ЕК

Теплоэлектронагреватель

 

 

EL

Лампа осветительная

F

Разрядники, предохранители, устройства защитные

FA

Дискретный элемент защиты по току мгновенного действия

 

 

FP

То же, по току инерционного действия

 

 

FU

Предохранитель плавкий

 

 

FV

Разрядник

G

Генераторы, источники питания

GB

Батарея аккумуляторов

 

 

GC

Синхронный компенсатор

 

 

Возбудитель генератора

Н

Устройства индикационные и сигнальные

НА

Прибор звуковой сигнализации

 

 

HG

Индикатор

 

 

HL

Прибор световой сигнализации

 

 

HLА

Табло сигнальное

 

 

HLG

Лампа сигнальная с зеленой линзой

 

 

HLR

Лампа сигнальная с красной линзой

 

 

HLW

Лампа сигнальная с белой линзой

 

 

HV

Индикаторы ионные и полупроводниковые

К

Реле, контакторы, пускатели

КА

Реле токовое

 

 

КН

Реле указательное

 

 

КК

Реле электротепловое

 

 

КМ

Контактор, магнитный пускатель

 

 

КТ

Реле времени

 

 

KV

Реле напряжения

 

 

КСС

Реле команды включения

 

 

КСТ

Реле команды отключения

 

 

KL

Реле промежуточное

L

Катушки индуктивности, дроссели

LL

Дроссель люминесцентного освещения

 

 

LR

Реактор

 

 

LM

Обмотка возбуждения электродвигателя

М

Двигатели

МА

Электродвигатели

Р

Приборы измерительные

РА

Амперметр

 

 

РС

Счетчик импульсов

 

 

PF

Частотомер

 

 

PI

Счетчик активной энергии

 

 

PK

Счетчик реактивной энергии

 

 

PR

Омметр

 

 

PT

Измеритель времени действия, часы

 

 

PV

Вольтметр

 

 

PW

Ваттметр

Q

Выключатели и разъединители силовые

QF

Выключатель автоматический

R

Резисторы

RK

Терморезистор

 

 

RP

Потенциометр

 

 

RS

Шунт измерительный

 

 

RU

Варистор

 

 

RR

Реостат

S

Устройство коммутации в цепях управления, сигнализации и измерительных цепях

SA

Выключатель или переключатель

 

 

SB

Выключатель кнопочный

 

 

SF

Выключатель автоматический

Т

Трансформаторы, автотрансформаторы

TA

Трансформатор тока

 

 

TV

Трансформаторы напряжения

U

Преобразователи

UB

Модулятор

 

 

UR

Демодулятор

 

 

UG

Блок питания

 

 

UF

Преобразователь частоты

V

Приборы электровакуумные и полупроводниковые

VD

Диод, стабилитрон

 

 

VL

Прибор электровакуумный

 

 

VT

Транзистор

 

 

VS

Тиристор

Х

Соединители контактные

ХА

Токосъемник

 

 

ХР

Штырь

 

 

XS

Гнездо

 

 

XW

Соединитель высокочастотный

Y

Устройства механические с электромагнитным приводом

YA

Электромагнит

 

 

YAB

Замок электромагнитный

electric-220.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта