Eng Ru
Отправить письмо

2.3. Выбор трансформаторов тока и допустимой вторичной нагрузки. Схема неполная звезда


Схемы соединений трансформаторов тока и цепей тока реле токовых защит

Для токовых защит используются схемы с ТТ, установленными во всех трёх фазах (трёхфазные) или в двух фазах (двухфазные). При этом вторичные обмотки ТТ могут соединяться в полную или неполную звезду, а также в полный или неполный треугольник.

Подключение пусковых реле тока к трансформаторам тока в схемах токовых защит может осуществляться по различным схемам:

  • соединение ТТ и обмоток реле в полную звезду;

  • соединение ТТ и обмоток реле в неполную звезду;

  • соединение ТТ в треугольник, а обмоток реле в звезду;

  • соединение двух ТТ и одного реле в схему на разность токов 2-х фаз;

  • соединение ТТ в фильтр токов нулевой последовательности.

Поведение и работа реле в каждой из этих схем зависят от характера распределения токов в ее вто­ричных цепях в нормальных и аварийных условиях. При анализе различных схем сначала определяются положительные направления действующих величин первичных токов ТТ при различных видах к.з., а затем определяются пути замыкания вторичных токов каждого ТТ. Результирующий ток в проводах и обмотках реле тока определяется геометрическим сложением или вычитанием соответствующих векторов фазных токов.

Для каждой схемы определяется отношение тока в реле Iр к току в фазе Iф, которое называется коэффициентом схемы:

;

Коэффициент схемы необходимо учитывать при расчёте уставок и оценке чувствительности токовой защиты.

Векторные диаграммы первичных токов при различных к.з. представлены на рисунке 23.

Схема соединения трансформаторов тока и обмоток реле в полную звезду

Трансформаторы тока устанавливаются во всех фазах. Вторич­ные обмотки трансформаторов тока и обмотки реле соединяются в звезду и их нулевые точки связываются одним проводом, назы­ваемым нулевым. В нулевую точку объединяются одноименные зажимы обмоток трансформаторов тока.

Рисунок 22 – Соединение трансформаторов тока и реле по схеме полной звезды

При нормальном режиме и трехфазном к.з. в реле I, II и III проходят токи фаз:

; ;,

а в нулевом проводе — их гео­метрическая сумма, , которая при симметричных режимах равна нулю (как при наличии, так и отсутствии заземления, рисунок 23, а).

Рисунок 23 – Векторная диаграмма токов.

а — при трехфазном к. з.; б — при двухфазном к. з.; е — при однофазном коротком замы­кании; г — при двухфазном к. з. на землю; д — при двойном замыкании на землю в раз­ных точках.

При двухфазных к.з. ток к.з. проходит только в двух поврежденных фазах и соответственно в реле, подключенных к трансформаторам тока поврежденных фаз (рисунок 23, б), ток в неповрежденной фазе отсутствует. Согласно закону Кирхгофа сумма токов в узле равна нулю, следовательно, = 0, отсюда .

С учетом этого на векторной диаграмме (рисунок 23, б) токи IB и IС показаны сдвинутыми по фазе на 180°.

Ток в нулевом проводе схемы равен сумме токов двух повре­жденных фаз, но так как последние равны и противоположны по фазе, то ток в нулевом проводе также отсутствует.

Т.е. реле, включенное в нулевой провод схемы трансформаторов тока, соединённых в полную звезду, не будет реагировать на междуфазные к.з.

Однако, из-за неидентичности характеристик и погрешностей ТТ сумма вторичных токов при нагрузочном режиме и при 3-х и 2-х фазных к.з. отличается от нуля и в нулевом проводе проходит ток, называемый током небаланса.

При однофазных к. з. первичный ток к.з. проходит только по одной поврежденной фазе (рисунок 23, в). Соответствующий ему вторичный ток проходит также только через одно реле и замы­кается по нулевому проводу.

При двухфазных к.з. на землю токи проходят в двух повреждённых фазах и соответственно в двух реле, а в нулевом проводе проходит ток, равный геометрической сумме токов повреждённых фаз, всегда отличный от нуля.

При двойном замыкании на землю в различных точках, например фаз В и С, на участке между точками замыкания на землю режим аналогичен 1ф. к.з. фазы В, а между источником питания и ближайшему к нему месту замыкания фазы С – соответствует режиму 2-х фазного к.з. фаз В и С.

Нулевой провод схемы звезды является фильтром токов нулевой последовательности. Токи прямой и обратной последовательностей в нулевом проводе не проходят, так как векторы каждой из этих систем дают в сумме нуль. Токи же нулевой последовательности совпадают по фазе, поэтому в нулевом проводе проходит утроенное значение этого тока.

Ток в реле равен току в фазе, поэтому коэффициент схемы равен единице: КСХ = 1.

Выводы:

  1. Схема полной звезды реагирует на все виды замыканий.

  2. Схема применяется для включения защиты от всех видов однофазных и междуфазных к.з.

  3. Схема отличается надежностью, так как при любом замыкании срабатывают по крайней мере два реле.

Схема соединения трансформаторов тока и обмоток реле в неполную звезду

ТТ устанавливаются в двух фазах (обычно А и С), вторичные обмотки и обмотки реле соединяются аналогично схемы полной звезды.

Рисунок 24 – Схема соединения транс­форматоров тока и обмоток реле в неполную звезду.

В нормальном режиме и при трёхфазном к.з. в реле I и III проходят токи соответствующих фаз:

; ,

В нулевом проводе ток равен их геометрической сумме: Фактически ток в нулевом проводе соответствует току фазы В, отсутствующей во вторичной цепи.

В случае двухфазного к.з. токи появляются в одном или двух реле (I или III) в зависимости от того, какие фазы по­вреждены.

Ток в обратном проводе при двухфазных к.з. между фазами А и С, в которых установлены трансформаторы тока, равен нулю, т.к. IA = - IC, а при замыка­ниях между фазами AB и ВC он соответственно равен IН.П = - Iа и IН.П = - IС.

В случае однофазного к.з. фаз (А или С), в кото­рых установлены трансформаторы тока, во вторичной обмотке трансформатора тока и обратном проводе проходит ток к.з. При замыкании на землю фазы В, в которой трансформатор тока не установлен, токи в схеме защиты не появляются; следовательно, схема неполной звезды реагирует не на все случаи однофазного к.з. и поэтому применяется только для защит, действующих при между фазных повреждениях. Рассмотрев поведение защиты при различных видах замыканий, нетрудно заметить, что при трехфазном замыкании работают три реле, при двухфазном - два; при замыкании фазы В на землю защита не работает.

Выводы:

1. Схема неполной звезды реагирует на все виды междуфазных замыканий.

2. Схема достаточно надежна, т.к. при любом междуфазном замыкании срабатывают, по крайней мере, два реле.

3. Для ликвидации однофазных замыканий требуется дополнительная защита.

4. используется для подключения защиты от междуфазных к.з.

Коэффициент схемы КСХ = 1.

Схема соединения ТТ в треугольник, а обмоток реле в звезду

Вторичные обмотки трансформаторов тока, соединенные после­довательно разноименными выводами, образуют тре­угольник. Реле, соединенные в звезду, подключаются к вершинам этого треугольника. Из токораспределения на рисунке 25, а) видно, что в каждом реле проходит ток, равный геометрической разности токов двух фаз:

; ;.

Рисунок 25 – Схема соединения ТТ в треугольник, а обмоток реле в звезду – а), векторная диаграмма токов – б).

При симметричной нагрузке и трехфаз­ном к.з. в каждом реле проходит линейный ток, в раз больший фазных токов и сдвинутый относи­тельно последних по фазе на 30°

(рисунок 25, б).

В таблице 3 приведены значения токов при других видах к.з. в предположении, что коэффициент трансформации трансформа­торов тока равен единице (КТ = 1).

Таблица 3 – Значения токов при различных видах к.з.

Вид короткого замыкания

Поврежден­ные фазы

Токи в фазах

Токи в реле

I

II

III

Двухфазное

А, В

IB = - IA, I C= 0

2IA

IB

-IA

В, С

IC = - IB, IA = 0

-IB

2IB

IC

С, А

IA = - IC, I B = 0

IA

-IC

2IC

Однофазное

А

IA = IK, IB = IC = 0

IA

0

-IA

В

IB = IK, IA = IC = 0

-IB

IB

0

С

IC =IK, IB = IC = 0

0

-IC

IC

Таким образом, схема соединения трансформаторов тока в тре­угольник обладает следующими особенностями:

1. Токи в реле проходят при всех видах к.з., и, следовательно, защиты по такой схеме реагируют на все виды к.з.

2. Отношение тока в реле к фазному току зависит от вида к.з.

3. Токи нулевой последовательности не выходят за пределы треугольника трансформаторов тока, не имея пути для замыка­ния через обмотки реле, значит при к.з. на землю в реле попадают только токи прямой и обратной последовательностей, т. е. только часть тока к.з.

В рассматриваемой схеме ток в реле при 3-х фазных симметричных режимах в раз больше тока в фазе, поэтому коэффициент схемыКСХ =.

В соответствии с таблицей 3 коэффициент схемы при 2-х фазных к.з. для разных реле соответствует значениям КСХ = 2 или 1 , а при однофазных к.з. – КСХ = 1или 0.

Описанная выше схема применяется в основном для дифферен­циальных и дистанционных защит

Схема соединения двух ТТ и одного реле, включённого на разность токов двух фаз.

ТТ устанавливаются в 2-х фазах (обычно А и С), их вторичные обмотки соединяются разноимёнными зажимами, к которым параллельно подключается токовое реле. В некоторой литературе эту схему называют схемой неполного треугольника.

Рисунок 26 – Схема соединения двух ТТ и одного реле, включённого на разность токов двух фаз.

В рассматриваемой схеме ток в реле равен геометрической сумме токов двух фаз, в которых установлены ТТ:

, где,.

При симметричной нагрузке и в режиме 3-х фазного к.з. ток в реле I(3)Р = IФ и К(3)СХ =.

При 2-х фазных к.з. между фазами, в которых установлены ТТ (А и С) в реле будет протекать двойной ток, т.к. в этом случае IA = - IC, и следовательно I(2)Р = 2 IФ и К(2)СХ.АС = 2.

При замыканиях между фазами АВ или ВС в реле поступает только ток той фазы, в которой установлен ТТ (Iа или Iс), поэтому I(2)Р = IФ и К(2)СХ.АВ = 1, К(2)СХ.ВС = 1.

При 1 фазных к.з. на фазах, в которых установлены ТТ в реле появляется фазный ток, при этом К(1)СХ. = 1, а при 1ф. к.з. на фазе, в которой ТТ не устанавливается (В) ток в реле будет отсутствовать и К(1)СХ. = 0.

Анализ поведения схемы при различных повреждениях показывает, что такое соединение позволяет выполнить защиту от всех видов междуфазных замыканий. Схема отличается экономичностью, но в то же время обладает сравнительно невысокой надежностью - отказ реле ведет к отказу защиты.

Защита, выполненная по этой схеме, имеет разную чувствительность к различным видам междуфазных замыканий Наименьший ток Iр, и поэтому наихудшая чувствительность, бу­дет при к.з. между двумя фазами (АВ и ВС), из которых одна фаза (В) не имеет трансформатора тока. Данная схема имеет худшую чувствительность при к.з. между АВ и ВС по сравнению со схемой полной и двухфазной звезды.

В случае однофазных к.з. на фазе, не имеющей трансформато­ров тока, ток в реле равен нулю, поэтому схема с включе­нием на разность токов двух фаз не может использоваться в ка­честве защиты от однофазных к.з.

Рассматриваемая схема может применяться только для за­щиты от междуфазных к.з. в тех случаях, когда она обеспечивает необходимую чувствительность при двухфазных к.з.

Схема соединения ТТ в фильтр токов нулевой последовательности

ТТ устанавливаются во всех фазах, а одноимённые зажимы их вторичных обмоток соединяются параллельно и к ним подключается обмотка реле (рисунок 27).

Рисунок 27 – Схема соединения трансформаторов тока в фильтр токов нулевой последовательности

В рассматриваемой схеме ток в реле равен геометрической сумме вторичных токов трёх фаз:

;

Ток в реле появляется только в режимах 1ф. к.з. и 2-х фазных к.з. на землю, так как только в этих режимах появляется ток нулевой последовательности.

В режимах симметричной нагрузки и междуфазных к.з. без земли сумма первичных и вторичных токов трёх фаз равна нулю и реле не действует.

Однако, в этих режимах из-за погрешностей ТТ в реле появляется ток небаланса Iн.б., который необходимо учитывать при применении схемы.

Рассматриваемую схему часто называют трёхтрансформаторным фильтром токов I0 и применяют для защит от однофазных и 2-х фазных к.з. на землю.

В режимах 2-х фазных к.з. за трансформаторами с соединением обмоток / и / и при 1 фазных к.з. за трансформаторами с соединением обмоток / различные схемы соединений ТТ и реле работают не одинаково.

Распределение токов к.з. в фазах линии при перечисленных к.з. за трансформаторами характеризуется тем, что токи проходят во всех фазах, причем в одной из фаз ток в 2 раза больше, чем в двух других, и сдвинут по отношению к ним по фазе на 1800. На рисунке 26 в виде примера приведён случай 2-х фазного к.з. между фазами А и В за силовым трансформатором /-11 с nТ = 1.

Рисунок 28 – Замыкание между двумя фазами за трансформатором с соединением обмоток /-11.

Защита по схеме полной звезды реагирует всегда на больший из токов, проходящий по одному из трёх реле.

Защита по схеме неполной звезды может оказаться в фазах с меньшими токами, поэтому она будет иметь в 2 раза меньшую чувствительность.

Защита по схеме неполного треугольника вообще не будет работать, т.к. ток в ней окажется равным нулю.

Исходя из вышеизложенного, в распределительных сетях напряжением до 35 кВ широкое применение получили защиты от междуфазных к.з. со схемой неполной звезды. Некоторые её недостатки по сравнению со схемой полной звезды – в 2 раза меньшая чувствительность при двухфазных к.з. за трансформаторами / и / и однофазных к.з. за трансформаторами / с заземлённой нейтралью могут быть устранены включением в обратный провод третьего реле тока. Ток в этом реле будет равен:

;

Ток Iр равен току третьей фазы (где отсутствует ТТ) и эта схема работает как схема полной звезды.

Схема неполного треугольника по сравнению со схемой неполной звезды имеет ряд недостатков:

– непригодна в качестве резервной защиты от двухфазных и однофазных к.з. за трансформаторами;

– имеет пониженную чувствительность для МТЗ при двухфазных к.з. между фазами, в одной из которых отсутствует ТТ.

Схема полной звезды является наиболее дорогой и не нашла широкого использования, т.к. требует установки 3-х ТТ.

Схема полного треугольника используется только на понижающих трансформаторах с глухозаземлёнными нейтралями.

Нагрузка трансформаторов тока

Выше отмечалось, что погрешность трансформатора тока за­висит от величины его нагрузки. Сопротивление нагрузки трансформатора тока равно:

,

где U2 и I2 — напряжение и ток вторичной обмотки ТТ.

Чтобы определить ZН, нужно вычислить напряжение U2, рав­ное падению напряжения в сопротивлении нагрузки ZН от про­ходящего в нем тока IН.

Сопротивление нагрузки состоит из сопротивления проводов rп и сопротивления реле ZР, которые для упрощения суммируются арифметически: ZН = rп + ZР.

Величина U2 = I2ZР зависит от схемы соединения трансформаторов тока, величины нагрузки ZН, вида к.з. и сочетания повреждённых фаз.

Для схемы полной звезды при трёх и двухфазных к.з.U2 равно падению напряжения в нагрузке фазы, т.е. U2 = I2 (rп + ZР), поэтому

;

При однофазном к.з. U2 равно падению напряжения в сопротивлении петли «фаза – нуль» и в сопротивлении реле в фазе ZР.Ф.и нулевом проводе ZР.0:

;

В схеме неполной звезды максимальная нагрузка на трансформаторы тока имеет место при двухфазных к.з. между фазой, имеющей ТТ и фазой, не имеющей его и равна ZН = 2rп + ZР.

При включении ТТ на разность токов двух фаз максимальная нагрузка на трансформаторы тока имеет место при двухфазных к.з. между фазами, имеющими трансформаторы тока и составляет:

;

В схеме треугольника трансформаторы тока имеют наибольшую нагрузку, равную как при 3-х, так и при 2-х фазных к.з. ZН = 3(rп + ZР).

Для уменьшения нагрузки на ТТ применяют последовательное включёние вторичных обмоток трансформаторов тока. При этом нагрузка распределяется поровну (уменьшается в два раза). Ток в цепи, равный I2=I1/nТ остается неизменным, а напряжение, приходящееся на каждый ТТ составляет I2ZН/2.

Выбор трансформаторов тока

Выбор трансформаторов тока для релейной защиты выполняется по следующему алгоритму:

  1. Определяется рабочий ток защищаемого объекта I раб.

  2. По найденному значению тока и номинальному напряжению выбирается трансформатор тока.

  3. Определяется максимально возможное значение тока повреждения защищаемого объекта I к.макс..

  4. Рассчитывается кратность тока короткого замыкания как отношение

,

где I1.ном – номинальный первичный ток ТТ.

5. Зная кратность К, по кривой 10%-й погрешности определяется допустимая нагрузка ZН. доп для выбранного трансформатора тока.

  1. Учитывая схему соединения ТТ, рассчитывается фактическая нагрузка трансформаторов тока ZН.факт. и сравнивается с допустимой ZН. доп.

7. Если ZН.факт ≤ ZН. доп считается, что трансформатор тока удовлетворяет требованиям точности и его можно использовать для данной схемы защиты. Если ZН.факт > ZН. доп, то необходимо принять меры для уменьшения нагрузки. В качестве таких мер можно назвать следующие:

- выбор трансформатора тока с увеличенным значением коэффициента трансформации;

- увеличение сечения контрольного кабеля;

- использование вместо одного трансформатора тока группу трансформаторов, соединенных последовательно.

Нормальным режимом работы для ТТ является режим короткого замыкания, в котором погрешности ТТ имеют наименьшие значения.

Работа трансформатора тока с разомкнутой вторичной обмоткой недопустима, т. к. в этом случае отсутствует размагничивающий поток в сердечнике ТТ, что приводит к его насыщению, резкому росту тока намагничивания и, как следствие, недопустимому нагреву трансформатора и разрушению изоляции. Раскорачивание вторичной обмотки ТТ при наличии тока в первичной приводит к перенапряжению во вторичных цепях и пробою изоляции.

studfiles.net

Неполная звезда - Большая Энциклопедия Нефти и Газа, статья, страница 1

Неполная звезда

Cтраница 1

Неполная звезда и схема на разность токов двух фаз применяются в сетях с изолированной нейтралью, а схема на сумму трех токов используется в релейных защитах от замыканий на землю.  [2]

Неполную звезду и схему на разность токов двух фаз применяют в сетях с изолированной нейтралью, а схему на сумму трех токов используют в релейных защитах от замыканий на землю.  [3]

Схема неполной звезды без реле, включенного на сумму токов двух фаз, не может быть использована, так как при одном из коротких замыканий между двумя фазами за трансформатором ( в данном случае при коротком замыкании между фазами А и В) ее чувствительность недостаточна.  [4]

Схема неполной звезды по сравнению с трехфазной - имеет меньшую чувствительность при коротких замыканиях за трансформатором с соединением обмоток звезда - треугольник. Так, например, если защита установлена на фазах Л и С звезды ( рис. 15 - 2), то при коротком замыкании между фазами А и В на стороне треугольника ( рис. 15 - 2) в реле зашиты протекает лишь половина полного тока короткого замыкания.  [6]

Обратный провод неполной звезды, в котором проходит ток отсутствующей фазы В, соединен с фазой В треугольника. В связи с этим на фазе В со стороны 6 кв трансформаторы тока не установлены, что приводит к экономии двух трансформаторов тока.  [7]

Соединение в неполную звезду ( схема в) широко применяют для включения измерительных приборов в трехпроводных установках при равномерной и неравномерной нагрузках фаз.  [9]

Соединение в неполную звезду ( рис. 143, в) широко используют для включения приборов в установках как с равномерной, так и неравномерной нагрузкой фаз. A IC), что показано на векторной диаграмме.  [10]

Более дешевая схема неполной звезды предусматривается для трехфазных систем с изолированной нейтралью. Включение ИТТ на разность токов двух фаз применяется редко, только в специальных схемах релейных защит.  [11]

Обычно для схемы неполной звезды используются трансформаторы тока, установленные в фазах А и С.  [13]

Схема соединений в неполную звезду ( рис. 77 6) реагирует только на все виды междуфазных коротких замыканий.  [14]

Страницы:      1    2    3    4    5

www.ngpedia.ru

Схема - полная звезда - Большая Энциклопедия Нефти и Газа, статья, страница 1

Схема - полная звезда

Cтраница 1

Схема полной звезды не имеет широких областей использования.  [2]

Схема полной звезды является универсальной, но самой дорогой. Она позволяет измерять или использовать ток всех трех фаз.  [3]

В схеме полной звезды ( рис. 2 - 12, а) в реле РТ проходят вторичные токи измерительных трансформаторов.  [5]

Защита по схеме полной звезды реагирует всегда на больший из токов, проходящий по одному из трех ее реле.  [7]

Например, для - схемы полной звезды при трехфазном и двухфазном коротких замыканиях ток в нулевом проводе отсутствует.  [8]

К АЗ соединены по схеме полной звезды. Комбинированный пусковой орган напряжения состоит из минимального реле напряжения K. V, включенного на междуфазное напряжение, и максимального реле напряжения KVZ, которое присоединяется к фильтру напряжения обратной последовательности.  [9]

Для проверки целости нулевого провода в схеме полной звезды при симметричной нагрузке измеряют ток небаланса в нулевом проводе. При очень малых величинах тока небаланса, не поддающихся измерению, для проверки целости нулевого провода исключают из схемы ТТ одну из фаз, искусственно создавая тем самым ток в нулевом проводе.  [10]

Разновидностью проверки является определение тока нулевого провода в схеме полной звезды. Теоретически при симметричной трехфазной нагрузке ток в нулевом проводе должен быть равен нулю. Практически за счет несимметрии первичных токов, несимметрии вторичной нагрузки и неидентичности, характеристик ТТ ток в нулевом проводе обычно не равен нулю.  [12]

По чувствительности эта схема включения пусковых органов равноценна схеме полной звезды.  [13]

Проверка целости нулевого провода при симметричной нагрузке в схеме полной звезды может быть произведена замером тока небаланса в нулевом проводе.  [15]

Страницы:      1    2    3    4    5

www.ngpedia.ru

Неполная звезда - Большая Энциклопедия Нефти и Газа, статья, страница 2

Неполная звезда

Cтраница 2

Обычно для выполнения схемы неполной звезды используются трансформаторы тока, установленные в фазах А и С.  [16]

Схема обладает достоинством схемы неполной звезды ( использование двух ТТ) и имеет такую же чувствительность при двухфазных к.  [17]

Вторичные обмотки трансформаторов тока соединяются в неполную звезду и заземляются. Достоинством этой схемы является то, что здесь требуется меньше трансформаторов тока и реле, что упрощает и удешевляет выполнение защиты. Недостатком ее является неодинаковая чувствительность при различных видах межфазовых замыканий. Для устранения указанного недостатка двухфазную схему выполняют с тремя реле.  [18]

ЗТ - трансформаторы тока соединены в схему неполной звезды.  [20]

В связи с тем, что схема неполной звезды реагирует не на все случаи однофазного короткого замыкания, она применяется только для защит, действующих при междуфазных повреждениях.  [21]

Трансформаторы тока соединяются соответственно в треугольник и неполную звезду.  [22]

Обмотки, питающие катушки реле, собраны по схеме неполной звезды. При такой схеме соединения во вторичных обмотках трансформаторов тока и в катушках реле протекает один и тот же фазный ток.  [23]

Определяется наибольшая фактическая вторичная нагрузка трансформатора тока для схемы неполной звезды.  [24]

В этом случае чувствительность защиты, выполненной по схеме неполной звезды, определяется током I в и равна чувствительности защиты, выполненной по схеме полной звезды.  [25]

Обмотки, питающие катушки реле, собраны по схеме неполной звезды. При такой схеме соединения во вторичных обмотках трансформаторов тока и в катушках реле протекает один и тот же фазный ток.  [26]

Исполнение защиты Двухфазное двухрелейное при включении трансформаторов тока в неполную звезду.  [27]

Наряду с этим возможна схема соединения трансформаторов тока в неполную звезду с раздельным включением двух обмоток реле. Во всех этих схемах иногда для уменьшения нагрузки на трансформаторы тока возникает необходимость в последовательном или параллельном соединении вторичных обмоток трансформаторов тока одной фазы.  [28]

На рис. 2 - 40 показано такое сочетание со схемой неполной звезды.  [30]

Страницы:      1    2    3    4    5

www.ngpedia.ru

2.3. Выбор трансформаторов тока и допустимой вторичной нагрузки

Исходя из тока нагрузки, его рабочего напряжения и вида защиты, выбирают тип трансформатора тока и его номинальный коэффициент трансформации.

Например: Iраб.макс=290 А  I1.ном=300 А  nт.ном=60.

Для дифференциальных и других защит, требующих точной работы трансформаторов тока при больших кратностях первичного тока, используются трансформаторы тока класса Р.

Для защит работающих при меньших значениях I1.макс – трансформаторы классов 1,3 и 10.

Проверка сводится к определению действительной нагрузки Zн и сопоставлению её с Zн.доп.

1. Необходимо знать I1.макс – ток короткого замыкания в максимальном режиме.

2. Вычисляют максимальную кратность первичного тока

, (2.6)

где Ка – коэффициент, учитывающий влияние апериодической составляющей тока КЗ на работу трансформаторов тока в переходном режиме, Ка – 1,2...2. Для защит, имеющих выдержку времени или включаемых через быстронасыщающиеся трансформаторы, (БНТ) Ка=1.

 – коэффициент, учитывающий возможное отклонение действительной характеристики намагничивания данного трансформатора тока от типовой =0,8...0,9.

3. По заводским кривым К10=f(Zном) определяется Zн.доп для вычисленного значения К10.

4. Определяется действительное сопротивление нагрузки Zн.

Если Zн>Zн.доп, то увеличивается nт или выбирается трансформатор тока у, которого при данном К10 допускается большее значение Zн.доп, или принимаются меры к уменьшению Zн.

Порядок расчета Zн должен быть изучен студентами самостоятельно.

2.4. Типовые схемы соединений трансформаторов тока

2.4.1. Соединение трансформаторов тока и обмоток реле в полную звезду

Схема соединения представлена на рис. 2.4.1, векторные диаграммы иллюстрирующие работу схемы на рис. 2.4.2, 2.4.3, 2.4.4.

В нормальном режиме (если он симметричный)(практически из–за погрешностей трансформаторов тока проходит небольшой ток – ток небаланса).

Рис.2.4.1

Трехфазное КЗ

Рис. 2.4.2.

Двухфазное КЗ

Рис. 2.4.3

Однофазное КЗ

Рис. 2.4.4

Схема применяется для включения защиты от всех видов однофазных и междуфазных КЗ.

Для каждой схемы соединений можно определить отношение тока в реле Iр к току в фазе Iф, это отношение называется коэффициентом схемы , для данной схемыkсх=1.

2.4.2. Соединение трансформаторов тока и обмоток реле в неполную звезду

Схема соединения представлена на рис. 2.4.5, векторные диаграммы иллюстрирующие работу схемы на рис. 2.4.6, 2.4.7.

Рис. 2.4.5

3 – фазное КЗ: токи проходят по обоим реле и в обратном проводе:

2 – фазное КЗ: токи проходят в одном или двух реле в зависимости от того, какие фазы повреждены.

Рис. 2.4.6

Однофазное КЗ фазы В: токи в схеме защиты не появляются.

Рис.2.4.7

Схема неполной звезды реагирует не на все случаи однофазного КЗ и применяется только для защиты от междуфазных КЗ в сетях с изолированными нулевыми точками:

kсх=1.

2.4.3. Соединение трансформаторов тока в треугольник, а обмоток реле в звезду

Схема соединения представлена на рис. 2.4.8.

Рис. 2.4.8

При трехфазном КЗ при симметричной нагрузке в реле проходит линейный ток в раз больше тока фазы и сдвинутый относительно него по фазе на 30.

Особенности схемы:

1) токи в реле проходят при всех видах КЗ, защиты построенные по такой схеме реагируют на все виды КЗ;

2) отношение тока в реле к фазному току зависит от вида КЗ;

3) токи нулевой последовательности не выходят за пределы треугольника трансформаторов тока, не имея пути для замыкания через обмотки реле.

Схема применяется в основном для дифференциальных защит трансформаторов и дистанционных защит.

Коэффициент схемы: .

studfiles.net

Неполная звезда - Большая Энциклопедия Нефти и Газа, статья, страница 2

Неполная звезда

Cтраница 2

Обычно для выполнения схемы неполной звезды используются трансформаторы тока, установленные в фазах А и С.  [16]

Схема обладает достоинством схемы неполной звезды ( использование двух ТТ) и имеет такую же чувствительность при двухфазных к.  [17]

Вторичные обмотки трансформаторов тока соединяются в неполную звезду и заземляются. Достоинством этой схемы является то, что здесь требуется меньше трансформаторов тока и реле, что упрощает и удешевляет выполнение защиты. Недостатком ее является неодинаковая чувствительность при различных видах межфазовых замыканий. Для устранения указанного недостатка двухфазную схему выполняют с тремя реле.  [18]

ЗТ - трансформаторы тока соединены в схему неполной звезды.  [20]

В связи с тем, что схема неполной звезды реагирует не на все случаи однофазного короткого замыкания, она применяется только для защит, действующих при междуфазных повреждениях.  [21]

Трансформаторы тока соединяются соответственно в треугольник и неполную звезду.  [22]

Обмотки, питающие катушки реле, собраны по схеме неполной звезды. При такой схеме соединения во вторичных обмотках трансформаторов тока и в катушках реле протекает один и тот же фазный ток.  [23]

Определяется наибольшая фактическая вторичная нагрузка трансформатора тока для схемы неполной звезды.  [24]

В этом случае чувствительность защиты, выполненной по схеме неполной звезды, определяется током I в и равна чувствительности защиты, выполненной по схеме полной звезды.  [25]

Обмотки, питающие катушки реле, собраны по схеме неполной звезды. При такой схеме соединения во вторичных обмотках трансформаторов тока и в катушках реле протекает один и тот же фазный ток.  [26]

Исполнение защиты Двухфазное двухрелейное при включении трансформаторов тока в неполную звезду.  [27]

Наряду с этим возможна схема соединения трансформаторов тока в неполную звезду с раздельным включением двух обмоток реле. Во всех этих схемах иногда для уменьшения нагрузки на трансформаторы тока возникает необходимость в последовательном или параллельном соединении вторичных обмоток трансформаторов тока одной фазы.  [28]

На рис. 2 - 40 показано такое сочетание со схемой неполной звезды.  [30]

Страницы:      1    2    3    4    5

www.ngpedia.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта