Eng Ru
Отправить письмо

Простая и надёжная схема терморегулятора для инкубатора. Схема термостат


Простой термостат на одной микросхеме. Схема и описание

Предназначение различных электронных термостатов, да и механических тоже, удерживать необходимый температурный показатель в определенном диапазоне. Разница между температурой, при которой термостат включает нагрузку и температурой, при которой он снова выключает ее, называется гистерезисом. Без этого гистерезиса термостат практически каждую секунду включал бы и выключал нагрузку.

Ниже приведена схема простого термостата на одной интегральной микросхеме. Он включает реле при снижении температуры и выключает его при повышении заданного порога. Если необходимо инвертировать работу реле, то нужно заменить p-n-p транзистор (BC557) на n-p-n тип (BC547). Для снижения энергопотребления, желательно выбрать такой режим работы, при котором реле большую часть времени будет обесточено.

Определение диапазона рабочих температур термостата

Есть много факторов, от которых зависит точность работа термостата. В основном это инертность самого нагревателя. Например, при достижении фактической температуры верхнего порога выставленного в термостате, реле обесточит нагреватель. Но все же он еще будет какое-то время отдавать тепло, тем самым еще немного поднимая температуру.

схема термостата на К561ЛЕ5

Так же обстоит дело и с нагревом, то есть при включении реле, нагреватель не сможет сразу начать отдавать тепло, для этого потребуется некоторое время, при котором фактическая температура будет продолжать опускаться. Другими словами - система, которую вы пытаетесь контролировать - может иметь свой определенный гистерезис.

Температура, при которой реле термостата включается - управляется уровнем напряжения, поступающим на контакты 5 и 6, а температура, при котором реле выключается - управляется напряжением, идущим на контакты 1 и 2. Разница между двумя уровнями температуры (гистерезис) - контролируется величиной сопротивления резистора R3. В качестве температурного датчика R4 применен термистор (терморезистор с отрицательным ТКС). Питание термостата осуществляется от самодельного блока питания.

В нашем случае, при тех значениях, которые указаны на схеме - температура, при которой реле включится, может быть в диапазоне от 22 гр.С до 29 гр.С, и с гистерезисом около 4 гр.С. Из-за возможных отклонений в заводских параметрах резисторов, результат возможен немного иной. Но за счет подбора значений R1, R2 и R3 – можно подобрать необходимый температурный диапазон и значение гистерезиса.

Сопротивлением переменного резистора R1 (желательно многооборотный) задается температурный диапазон. Чем выше значение R1, тем шире диапазон. Однако если вы сделаете диапазон регулировки слишком широким, то установить точную температуру станет труднее.

Значение R2 позволяет установить температурный порог работы термостата. Уменьшение значения R2 обеспечивает более высокую температуру, увеличение более низкую. Необходимо подобрать R2, которое будет близко к целевой температуре, а затем подстроить более точно переменным резистором R1. Необходимое сопротивление можно легко подобрать зная цветовую маркировку постоянных резисторов

Резистором R3 выставляется значение гистерезиса в работе термостата. При увеличении/уменьшении сопротивления R3 соответственно увеличивается/уменьшается гистерезис.

www.zen22142.zen.co.uk

www.joyta.ru

Схема терморегулятора для инкубатора своими руками

Приведенная ниже схема является развитием темы симисторного регулятора мощности. В данном случае добавляются термочувствительный и нагревательный элементы благодаря которым и поддерживается требуемая температура. Включая-отключая нагрузку, которой служит электронагреватель, терморегулятор регулирует температуру микросреды инкубатора, аквариума или другого замкнутого пространства.

Схема терморегулятора

  • R1 – 10 кОм;
  • R2 – 22 кОм;
  • R3 – 100 кОм;
  • R4 – 6,8 кОм;
  • R5 – 1 кОм;
  • R6 – 6,8 кОм;
  • R7 – 470 Ом;
  • R8 – 51 Ом;
  • R9 – 5,1 кОм;
  • R10 – 27 кОм 2Вт;
  • С1 – 0,33 мкФ;
  • DA1 – КР140УД6;
  • VT1 – КТ117;
  • VD1 – КС212Ж;
  • VD2 – КД105;
  • VS1 – КУ208Г.

Принцип работы терморегулятора

Итак, рассмотрим как работает схема терморегулятора для инкубатора своими руками: основой данного устройства является операционный усилитель DA1, работающий в режиме компаратора напряжений. На один вход подается изменяющееся напряжение с терморезистора R2, а на второй, задаваемое переменным резистором R5 и подстроечным R4. Для точной и грубой регулировки. В зависимости от области применения, подстроечный резистор можно и исключить.При равенстве входных напряжений транзистор VT1, управляемый выходом компаратор – закрыт, на управляющем электроде VS1 ноль, а значит закрыт и симистор. При изменении температуры меняется сопротивление R2, а на разницу напряжений на входах компаратор отреагирует подачей открывающего сигнала на VT1. Появившееся на R8 напряжение откроет тиристор, пустив через нагрузку ток. Когда напряжения на входах операционного усилителя выравняются, он отключит нагрузку.Питание управляющего каскада осуществляется через выпрямительный диод VD2 и гасящее сопротивление R10. При его сверхмалом потреблении тока – это вполне допустимо, как и использование для стабилизации питающего напряжения всего одного стабилитрона VD1. К тому же, управляющие цепи запитываются через нагрузку, на которой тоже происходит падение напряжения, особенно в нагретом состоянии.

Замены деталей

Обратите внимание на мощность резистора R10 — 2Вт, так же этот резистор должен выдерживать мгновенное напряжение 400В, если такой резистор не удается найти, его можно заменить несколькими последовательно включенными резисторами на меньшую мощность и напряжение.В качестве стабилитрона VD1 можно установить BZX30C12 или любой другой стабилитрон на 12В близкий по параметрам.Вместо VD2 можно поставить диод с обратным напряжением не менее 400В и током не менее 0,3А: например из серии 1N4004 — 1N4007На место DA1 можно установить практически любой операционный усилитель, главное чтобы он работал в диапазоне питающих напряжений 10..15В.

А вот однопереходный транзистор КТ117 (VT1) не такой общераспространенный компонент электронных схем (зарубежные однопереходные транзисторы: 2N6027, 2N6028), зато его можно заменить схемой из двух биполярных транзисторов разной структуры и одного резистора 47 кОм. В схеме используются распространенные КТ315 и КТ361, но вполне могут использоваться и другие маломощные комплиментарные биполярные транзисторы.

Области применения терморегулятора

В основном, данное устройство применялось для термостабилизации птичьих инкубаторов. Где в роли тэнов выступали маломощные электрические лампочки по 60 Вт, соединенные параллельно по 4, 6 и 8 штук, в зависимости от размеров инкубатора и количества инкубируемых яиц.

Как монтировать обогреватель для инкубатора

  • лампы должны быть равномерно расположены над поверхностью яиц, на расстоянии 25-30 см от их поверхности;
  • терморезистор должен находиться как можно ближе к поверхности яиц, но не касаться их;
  • использовать вместо лампочек можно и другие нагреватели, но с малой теплоемкостью, к примеру, вольфрамовую проволоку, натянутую на керамическую рамку в форме тетраэдра.

Обогреватель для аквариума

Реже, такой терморегулятор применялся для поддержания заданной температуры в аквариумах с тропическими рыбками. Такая необходимость возникала из-за того, что большинство, выпускаемых для этих целей термообогревателей, имеет механический терморегулятор объединенный с тэном в одном корпусе. А следовательно, они поддерживают в заданных пределах свою, а не окружающую температуру. Это хорошо работает только в помещениях со стабильной, в пределах одного-двух градусов, своей температурой воздуха.

Особенности монтажа

  • из-за инертности воды, датчик и обогреватель должны быть разнесены, но в пределах прямой видимости (без перекрытия растениями и элементами декора) друг от друга;
  • из-за электропроводимости воды, датчик должен быть изолирован, либо средствами с хорошей теплопроводностью, либо тонким слоем обычного герметика;
  • допускается использование как обычных аквариумных обогревателей, так и регулируемых, с выставленной на максимум температурой.

Можно найти и другие сферы применения данному, несложному в изготовлении устройству. К примеру для рассадных парничков, сушильных шкафов, различных термованночек. На что вашей фантазии хватит. Только, если нагрузка допускает возможность короткого замыкания, необходимо добавить плавкий предохранитель на 1 А.

P.S.Как говорилось выше данный простой терморегулятор применялся в инкубаторах раньше, сейчас на его смену пришли терморегуляторы с микроконтроллерным управлением, способные в автоматическом режиме понижать температуру в течении цикла инкубации. Да и сами инкубаторы обзавелись функцией регулирования влажности и переворачивания яиц.

hardelectronics.ru

Простая и надёжная схема терморегулятора для инкубатора

Простая и надёжная схема терморегулятора для инкубатора ТЕРМОРЕГУЛЯТОР СВОИМИ РУКАМИ

С ранней весны и до середины лета — пора инкубаторов. Почти все, имеющие в своём подворье птиц пользуются инкубаторами. С ним удобно в любой период времени вывести необходимое количество любой породы птицы. Не надо ждать когда сядет на гнездо наседка.

Неотъемлемая часть любого инкубатора — это терморегулятор! От его надёжности и точности зависит и вывод птицы.

Необязательно использовать программируемый цифровой дорогой терморегулятор. Со своей задачей отлично справляется терморегулятор, предложенный в этой статье. Простая и надёжная схема терморегулятора для инкубатора на одной простой и недорогой микросхеме К561ЛА7 предложена ниже.

TERMO_4

Простая, потому что кучу транзисторов заменила одна микросхема.

Надёжная, потому что в схеме используются некоторые моменты:

  1. Для падения напряжения с 220В до 9В используется резистор, а не конденсатор (как часто бывает в других схемах). Он намного надёжнее.
  2. Лампы включены последовательно-параллельно, что тоже надёжнее чем просто параллельное включение.
  3. При плохом контакте переменного резистора «температура» произойдёт отключение ламп, а не наоборот.
  4. Микросхема К561ЛА7 (как показала практика) более надёжная чем ОУ или PIC.

На первом элементе DD1.1 собран пороговый элемент, который меняет с 1 на 0 свое положение на выходе при заданной температуре. Регулятором «Температура» меняется этот порог.

На втором элементе DD1.2 собран формирователь импульсов для правильной работы тиристора.

Третий элемент DD1.3 — сумматор.

Четвёртый элемент DD1.4 — свободен и может использоваться (в крайнем случае) для замены одного из остальных элементов в случае его выхода из строя.

Микросхему К561ЛА7 можно заменить её импортным аналогом CD4011B.

Ток потребления схемы по 9В — 5 мА, температура R13 примерно 60 — 70 гр. — это нормальный режим резистора.

Импульсы, поступающие на транзистор открывают его, что способствует в последствии открыванию тиристора.

Тиристор (Т122 или КУ202Н,М,Л) — мощный коммутирующий элемент схемы. Тиристор (если используется КУ202Н,М,Л) без радиатора способен коммутировать нагрузку до 300 Вт. Обычно это хватает. Если у вас нагрузка превышает данное значение, то тиристор необходимо поставить на радиатор. Максимальное значение 1000 Вт. А также можно установить более мощный тиристор — Т122.

Рассчитать нагрузку для инкубатора просто. Включаем нагреватели (лампы) через данный регулятор температуры на полную. И контролируем по термометру температуру. Даже на полную (лампочки не отключаются) температура в инкубаторе не должна подниматься выше 50 градусов.

Так как, в процессе эксплуатации нити ламп сильно провисают и перегорают. Есть опасность выхода из строя тиристора. Поэтому лампы рекомендуется соединять последовательно-параллельно, как указано на схеме, для большей продолжительности срока службы ламп и схемы.

Так как в инкубаторе очень высокая влажность на датчик температуры — терморезистор необходимо надеть кусочек трубочки и залить с двух сторон водостойким клеем или герметиком. Это лучше проделать несколько раз с периодом в несколько часов после высыхания. Торец терморезистора можно оставить на поверхности для большей чувствительности.

Схема универсальна к выбору терморезисторов. Номинал терморезистора подходит в широких пределах. Я пробовал от 1 кОма до 15 кОм, которые были у меня в наличии. Подойдут и другие. Правильный режим работы необходимо подобрать делителем на R2, R3. Подобрать  R3 можно по таблице ниже.

Терморезистор

R3

1 kОм

2,7 кОм

2 кОм

4,3 кОм

3,6 кОм

7,5 кОм

10 кОм

10 кОм

15 кОм

15 кОм

Следует учитывать: чем больше сопротивление терморезистора или больше сопротивление R1 — R5, тем меньше диапазон регулирования переменными резисторами.

Можно использовать терморезисторы как с отрицательным, так и с положительным ТКС. С отрицательным ТКС, как сейчас на схеме, а с положительным терморезистор следует установить в низ делителя (например, в разрыв между R3 и R4).

Схема терморегулятора построена на логической микросхеме, а между уровнями логической 0 и 1 есть неопределенное состояние (см. рис), поэтому в данной схеме есть определенный гистерезис (запаздывание между включением и отключением).

Простая и надёжная схема терморегулятора для инкубатора

Гистерезис очень сильно зависит от типа применяемого терморезистора.

Если Вам ненужно быстрое реагирование схемы на температуру, используйте терморезистор в металлическом корпусе. Типа MMT-4. Гистерезис в данном случае 2,5 — 3 гр.

Простая и надёжная схема терморегулятора для инкубатора

Если нужна быстрая реакция схемы на температуру, то используйте терморезисторы в неметаллическом корпусе. Гистерезис 0,1 — 0,5 гр. Лампочки включаются и отключаются в несколько раз чаще.

ThermoResistor_3ThermoResistor

Таблица напряжений по постоянному току микросхемы К561ЛА7

(измеряется цифровым мультиметром в рабочей схеме)

№ вывода

Нагреватель выкл / включен

1, 2

4,3 / 5,5

3

0,2 / 8,9

4

3,8 / 8,9

5, 6

4,1 / 0

7

0

8

7 / 8,9

9

0,2 / 8,9

10

~

12, 13

0

14

9 / 7,5

Фото собранной платы

Примечание: маркировка некоторых деталей согласно схемы изменилась.

inkubator_010

Простая и надёжная схема терморегулятора для инкубатора

Фото печатной платы

OLYMPUS DIGITAL CAMERA

Благодаря использованию резистора (R13, а не конденсатора) для понижения напряжения, стабилизации и фильтрации питающего микросхему напряжения, а также других «фишек» данная схема терморегулятора используется в инкубаторе более 10 лет и не разу не подвела!

А. Зотов. Волгоградская обл.

P.S. Если Вы решили сделать вышеизложенный терморегулятор, но у вас нет платы или некоторых эл. компонентов, то Вы можете приобрести у нас НАБОР ДЛЯ САМОСТОЯТЕЛЬНОЙ СБОРКИ ТЕРМОРЕГУЛЯТОРА ДЛЯ ИНКУБАТОРА.

Фото готовой платы, собранной из набора

Простая и надёжная схема терморегулятора для инкубатора

Вы можете купить готовый цифровой модуль терморегулятора со встроенным цифровым термометром в нашем магазине.

termo_102-228x228

 Наш «Магазин Мастера«

Простая и надёжная схема терморегулятора для инкубатора

Прислать свою поделку!

П О П У Л Я Р Н О Е:

  • Какой аппарат для плазменной резки лучше?
  • Какой аппарат для плазменной резки лучше?Аппарат для плазменной резки используется для сварки и резки токопроводящих и других металлических материалов, а также для термообработки поверхностей, включая закалку металла, отжиг материалов для снижения твердости, зачистки верхнего слоя стали.

    Аппарат применяется для сварки цветных, черных металлов и других работ, требующих интенсивного концентрированного нагрева твердых материалов.

    Подробнее…

  • Ремонт флешки своими руками
  • flash_1Перевод контроллера флэш в тестовый режим (замыканием выводов памяти)

    После некотрорых программных сбоев контроллера или микросхемы памяти, Windows не может определить подключённое устройство и при этом, операционная система не может установить соответствующий драйвер. Подробнее…

  • Как устроена и работает сплит-система?
  • Как устроена и работает сплит-система?

    Принцип работы кондиционера

    Сплит-система (кондиционер) есть сейчас почти в каждом доме. Давайте разберемся — как же работает сплит-система (кондиционер)?

    Подробнее…

>>

ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ:

Популярность: 121 576 просм.

www.mastervintik.ru

Простой электронный термостат для холодильника на LM35. Схема и описание

Данный электронный термостат для холодильника поможет в тех случаях, когда собственный (заводской) термостат неисправен или его точность работы уже недостаточна. В старых холодильниках используется механический термостат температуры с использованием жидкости или газа, которыми заполнен капилляр.

При изменении температуры меняется и давление внутри капилляра, которое передается на мембрану (сильфона). В результате термостат включает и выключает компрессор холодильника. Конечно же, подобная система термостатирования имеет низкую точность, и детали ее со временем изнашиваются.

Описание работы термостата для холодильника

Как известно температура хранения пищевых продуктов в холодильной камере должна быть +2…8 градусов Цельсия. Рабочая температура холодильника +5 градусов.

Электронный терморегулятор для холодильника характеризуется двумя параметрами: температура запуска и остановки (либо средняя температура плюс значение гистерезиса) компрессора. Гистерезис необходим для предотвращения слишком частого включения компрессора холодильника.

В данной схеме предусмотрен гистерезис в 2 градуса при средней температуре в 5 градусов. Таким образом, компрессор холодильника включается, когда температура достигнет + 6 градусов и отключается при снижении ее до + 4 градусов.

схема простого термореле для холодильника

Этот температурный интервал достаточный для поддержания оптимальной температуры хранения продуктов, и при этом он обеспечивает комфортную работу компрессора, предотвращая его чрезмерный износ. Это особенно важно для уже старых холодильников, использующих термореле для запуска двигателя.

Электронный термостат является подходящей заменой оригинального термостата. Терморегулятор считывает температуру с помощью датчика, сопротивление которого меняется в зависимости от изменения температуры. Для этих целей довольно часто используют термистор (NTC), но проблема заключается в его низкой точности и необходимости в калибровке.

Для обеспечения точной установки контролируемой температуры и избавления от многочасовой калибровки, в данном варианте термостата для холодильника был выбран датчик температуры LM35. Он представляет собой интегральную схему, линейно откалиброванную в градусах Цельсия, с коэффициентом 10 мВ на 1 градус Цельсия. В связи с тем, что пороговая температура близка к нулю, относительное изменение выходного напряжения велико. Поэтому сигнал с выхода датчика можно контролировать с помощью простой схемы состоящей всего из двух транзисторов.

Так как выходное напряжение слишком мало, чтобы открыть транзистор VT1, датчик LM35  включен как источник тока. Его выход нагружен резистором R1 и поэтому сила тока на нем  изменяется пропорционально температуре. Этот ток влечет падение на резисторе R2. Падение напряжения управляет работой транзистора VT1. Если падение напряжения превышает пороговое напряжение перехода база-эмиттер, транзисторы VT1 и VT2 открываются, реле К1 включается, чьи контакты подключены вместо контактов старого термостата.

Резистор R3 создает положительно обратную связь. Это добавляет небольшой ток к сопротивлению R2, который сдвигает порог и тем самым обеспечивает гистерезис. Обмотка электромагнитного реле должна быть рассчитана на 5…6 вольт. Контактная пара реле должна выдерживать необходимый ток и напряжение.

Датчик LM35 расположен внутри холодильника в подходящем месте. Сопротивление R1 припаивается непосредственно к датчику температуры, что в свою очередь позволяет соединить LM35 с монтажной платой всего двумя проводами.

Провода соединяющие датчик могут внести в схему помехи, поэтому для подавления помех добавлен конденсатор С2. Схема работает от источника питания 5 вольт построенного на стабилизаторе 78L05. Потребление тока главным образом зависит от типа используемого реле. Блок питания должен быть надежно изолированы от сети.

Большим преимуществом этой схемы является то, что она начинает работать сразу при первом запуске и не нуждается в калибровке и настройке. Если возникнет необходимость немного изменить уровень температуры, то это можно сделать путем подбора сопротивлений R1 или R2. Сопротивление R3 определяет величину гистерезиса.

www.joyta.ru

Датчик температуры LM35 в схеме термостата

Это простая, но в свою очередь очень точная схема термостата, которая может быть применена там, где необходим автоматический контроль температуры. Схема термостата управляет миниатюрным реле в соответствии с температурой измеренной температурным датчиком LM35.

Когда датчик температуры LM35 фиксирует  температуру выше, чем заданный уровень (уровень устанавливается резистором Р1), реле включается, а когда температура падает ниже заданной температуры, реле выключается.

Описание работы термостата на датчике LM35

Основой схемы является температурный датчик LM35, который имеет заводскую калибровку в градусах Цельсия с погрешностью 1%. У датчика линейная шкала зависимости Градус/Вольт. Выходное напряжение (контакт 2) изменяется с температурой от 0мВ (0С) до 1500мВ (+150C).

Это очень упрощает схему термостата, поскольку мы только должны создать точное опорное напряжение при помощи стабилитрона TL431 и точный блок сравнения на операционном усилителе LM358.

Датчик температуры lm35 в схеме термостата

Переменный резистор (Р1) и резистор (R3) формируют переменный делитель напряжения, который устанавливает опорное напряжение от 0В до 1,62В.

Операционный усилитель (DA1.1) является буфером опорного напряжения, чтобы избежать влияния делителя. Компаратор (DA1.2) сравнивает опорное напряжение, установленный переменным резистором Р1, с выходным напряжением температурного датчика LM35 и решает, включить или выключить реле управления.

О включении  реле сигнализирует светодиод VD3. Транзистор VT1 можно заменить на КТ3107, КТ209, КТ501 и перед установкой желательно его проверить на исправность.

Настройка термостата

Калибровка достаточна, проста, нам понадобится всего лишь вольтметр. Подключите вольтметр к указанным на схеме точкам «А» и «В» и переменным резистором Р1 установите необходимое опорное напряжение. Не забудьте что 10мВ равен одному градусу Цельсия, то есть, к примеру, чтобы получить значение в 50 гр.С необходимо выставить 500мВ.

www.joyta.ru

Простой термостат на компараторе — Меандр — занимательная электроника

Читать все новости ➔

Идея подобного устройства возникла в процессе апгрейда усилителя на 4-х TDA2030A. Очень уж мне не нравился шум вентилятора. За музыкой его слышно конечно же не было но, когда музыка выключалась, было слышно довольно громкое жужжание вентилятора, обдувающего радиатор. В результате родилась такая вот схема на компараторе LM311.1Для начала вспомним, что есть компаратор.

Компаратор (от англ. compare - сравнивать) - это сравнивающее устройство.2Он сравнивает напряжение на прямом входе (у компаратора их два - прямой и инверсный), с напряжением на инверсном входе (напряжение срабатывания). Резисторы R1 и R2 образуют делитель напряжения. С их помощью осуществляется настройка порогового напряжения срабатывания компаратора. Если на прямом входе напряжение превысит напряжение инверсного входа, то компаратор выдаст на выходе высокий уровень, равный напряжению питания компаратора.

Резистор R3 служит для создания положительной  обратной связи для формирования гистерезисной передаточной характеристики. Эта мера позволяет избежать быстрых нежелательных переключений состояния выхода, обусловленном шумами во входном сигнале.

На компараторе можно даже построить простейший АЦП, если выставить порог срабатывания и напряжение питания компаратора равными логической единице!

Итак, термостат.

Принцип его действия таков: радиатор не охлаждается, пока его температура не достигнет 40-50 градусов (зависит от сопротивления резисторов RV1 и RT1). По достижении необходимой температуры кулер включается, охлаждает радиатор и снова отключается. Такая схема позволит снизить шум вентилятора на тех режимах работы усилителя, когда нагрев микросхем УМЗЧ незначителен и таким образом уменьшить уровень шума.3Здесь компаратор управляет полевым транзистором, который может коммутировать нагрузку (кулер, светодиод, реле и пр.).

Видно что напряжение на прямом входе (12,7В) меньше чем на инверсном (12,8В). На выходе компаратора 0В, следовательно полевик закрыт, ток через него не течет и двигатель не вращается.

Немного изменим сопротивление RV1.

Напряжение на входе превысило пороговое, компаратор открыл транзистор, через него пошел ток, двигатель начал вращаться. В реальных условиях должно изменится сопротивление RT1 из-за нагревания (если это NCT) или охлаждения ( если PCT).

Теперь посмотрим как это будет выглядеть "в железе".4Данные о температуре снимаются с помощью NTC термистора на 1 кОм.

Мой выбор пал на SMD-монтаж, т.к. передо мной стояла задача сделать устройство, имеющее как можно меньшие габариты.

Такую платку можно просто прилепить на термоклей или 2-сторонний скотч к радиатору или стенке корпуса усилителя.

Настройка осуществляется довольно просто: необходимо чтобы терморезистор приобрел комнатную температуру. После этого его калибруют вращением подстроечного резистора до прекращения срабатывания на комнатную температуру. Затем нагревают термистор до необходимой расчетной температуры (я калибровал примерно на 50*С. Прилепил термистор к настольной лампе со 100Вт лампой накаливания и настраивал по теплу, отдаваемому лампой.) и подстраивают резистор до появления срабатывания на необходимую температуру.

Ну и не стоит забывать о теплопроводящей пасте между термистором и радиатором.

Печатная плата

cxem.net

Возможно, Вам это будет интересно:

meandr.org

Схема терморегулятора воды

Регулятор температуры воды своими руками

терморегулятор схема воды Несложные терморегулятор может найти хорошее применение на даче, в доме, в котедже для нагрева воды в баке.

Метод регулирования устройства двухпозиционный. Включение и отключение тэнов происходит с помощью контактов реле. Устройство не имеет сетевого трансформатора, снабжено контрольной лампочкой, потенциометром, служащим для установки требуемой температуры и датчиком температуры, роль которого выполняет биполярный транзистор.И своими руками вам нужно только его собрать и пользоватся.

 

Схема:

Питается устройство от сети переменного тока 220в. Через гасящие конденсаторы С3, С4 и шунтирующие диоды Д5, Д6 переменное напряжение поступает на диодный мост и стабилизируется стабилитроном +24в.

Длина провода до датчика составляет не более 1м. При большей длине следует использовать экранированный провод. Плата с деталями монтируется в подходящем корпусе, на лицевую панель выводятся потенциометр, индикаторная лампочка и выключатель питания. Градуировку шкалы потенциометра необходимо выполнить по образцовому термометру от 20 до 100 градусов.

При необходимости диапазон регулирования можно сместить, сузить или расширить с помощью ограничительных резисторов R1,R3.

Детали регулятора: транзистор КТ315 с любым буквенным индексом. КТ815 заменим на КТ817, КТ805. Стабилитрон подойдёт с напряжением стабилизации 20-30в. Диоды D1-D3 практически любые кремниевые низкочастотные. Д5,Д6 на напряжение не ниже 400в. Конденсаторы C3,C4 ёмкостью от 4,7 до 5,6 мкф на напряжение не ниже 400в от энергосберегающих ламп, малогабаритные. Реле с катушкой на 24в и с контактами 5-10А соответствующими мощности нагрузки.

ВНИМАНИЕ! Будте осторожны регулятор не имеет гальванической развязки с сетью, поэтому при его работе не прикасайтесь к его частям. Датчик V1 необходимо заизолировать!

 

Печатной платы в формате LAY жалко не осталось,только то что на картинке

radiostroi.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта