26.Способы возбуждения синхронных машин. Способы возбуждения синхронных машин26.Способы возбуждения синхронных машин.Для питания обмотки возбуждения предусмотрено наличие возбудителя, в его качестве выступает генератор постоянного тока, якорь которого сопряжен с валом машины, посредством использования механического устройства. По способу возбуждения синхронные машины подразделяются на два типа: Возбуждение независимого вида. Самовозбуждения. При независимом возбуждении схема подразумевает наличие подвозбудителя, который питает: обмотку главного возбудителя, реостат для регулировки, устройства управления, регуляторы напряжения и т. д. Кроме этого способа, возбуждение может осуществляться от генератора, выполняющего вспомогательную функцию, он приводится в работу от двигателя синхронного или асинхронного типа. Для самовозбуждения, питание обмотки происходит через выпрямитель, работающий на полупроводниках или ионного типа. Для турбо- и гидрогенераторов используют тиристорные устройства возбуждения. Ток возбуждения регулируется в автоматическом режиме, при помощи регулятора возбуждения, для машин малой мощности характерно использование регулировочных реостатов, они включены в цепь обмотки возбуждения. 27.Преимущества и недостатки синхронного двигателя.Синхронный двигатель имеет ряд преимуществ перед асинхронным: 1. Высокий коэффициент мощности cosФ=0,9. 2. Возможность использования синхронных двигателей на предприятиях для увеличения общего коэффициента мощности. 3. Высокий КПД он больше чем у асинхронного двигателя на (0,5-3%) это дастигается за счёт уменьшения потерь в меди и большого CosФ. 4. Обладает большой прочностью обусловленной увеличенным воздушным зазором. 5ращающий момент синхронного двигателя прямо пропорционален напряжению в первой степени. Т.е синхронный двигатель будет менее чувствителен к изменению величины напряжения сети.
1. Сложность пусковой аппаратуры и большую стоимость. 2. Синхронные двигатели применяют для приведения в движение машин и механизмов, не нуждающихся в изменении частоты вращения, а так же для механизмов у которых с изменением нагрузки частота вращения остаётся постоянной: (насосы, компрессоры, вентиляторы.) Пуск синхронного двигателя. В виду отсутствия пускового момента в синхронном двигателе для пуска его используют следующие способы: 1. Пуск с помощью вспомогательного двигателя. 2. Асинхронный пуск двигателя. 1. Пуск с помощью вспомогательного двигателя. Пуск в ход синхронного двигателя с помощью вспомогательного двигателя может быть произведен только без механической нагрузки на его валу, т.е. практически вхолостую. В этом случае на период пуска двигатель временно превращается в синхронный генератор, ротор которого приводится во вращение небольшим вспомогательным двигателем. Статор этого генератора включается параллельно в сеть с соблюдением всех необходимых условий этого соединения. После включения статора в сеть вспомогательный приводной двигатель механически отключается. Этот способ пуска сложен и имеет к тому же вспомогательный двигатель. 2. Асинхронный пуск двигателя.Наиболее распространенным способом пуска синхронных двигателей является асинхронный пуск, при котором синхронный двигатель на время пуска превращается в асинхронный. Для возможности образования асинхронного пускового момента в пазах полюсных наконечников явнополюсного двигателя помещается пусковая короткозамкнутая обмотка. Эта обмотка состоит из латунных стержней, вставленных в пазы наконечников и соединяемых накоротко с обоих торцов медными кольцами. При пуске в ход двигателя обмотка статора включается в сеть переменного тока. Обмотка возбуждения (3) на период пуска замыкается на некоторое сопротивление Rг, рис. 45, ключ К находится в положении 2, сопротивление Rг = (8-10)Rв. В начальный момент пуска при S=1, из-за большого числа витков обмотки возбуждения, вращающее магнитное поле статора наведет в обмотке возбуждения ЭДС Ев, которая может достигнуть весьма большого значения и если при пуске не включить обмотку возбуждения на сопротивление Rг произойдет пробой изоляции.
Рис. 45 Рис. 46. Процесс пуска синхронного двигателя осуществляется в два этапа. При включении обмотки статора (1) в сеть в двигателе образуется вращающее поле, которое наведет в короткозамкнутой обмотке ротора (2) ЭДС. Под действием, которой будет протекать в стержнях ток. В результате взаимодействия вращающего магнитного поля с током в коротко замкнутой обмотке создается вращающий момент, как у асинхронного двигателя. За счет этого момента ротор разгоняется до скольжения близкого к нулю (S=0,05), рис. 46. На этом заканчивается первый этап. Чтобы ротор двигателя втянулся в синхронизм, необходимо создать в нем магнитное поле включением в обмотку возбуждения (3) постоянного тока (переключив ключ К в положение 1). Так как ротор разогнан до скорости близкой к синхронной, то относительная скорость поля статора и ротора небольшая. Полюса плавно будут находить друг на друга. И после ряда проскальзываний противоположные полюса притянутся, и ротор втянется в синхронизм. После чего ротор будет вращаться с синхронной скоростью, и частота вращения его будет постоянной, рис. 46. На этом заканчивается второй этап пуска. studfiles.net 4 РазделСИНХРОННЫЕ МАШИНЫ Способы возбуждения и устройство синхронных машин Магнитное поле и характеристики синхронных генераторов Параллельная работа синхронных генераторов Синхронный двигатель и синхронный компенсатор Синхронные машины специального назначения Синхронные машины — это бесколлекторные машины переменного тока. По своему устройству они отличаются от асинхронных машин лишь конструкцией ротора, который может быть явнополюсным или неявнополюсным. Что же касается свойств, то синхронные машины отличаются синхронной частотой вращения ротора (n2 = n1 = const) при любой нагрузке, а также возможностью регулирования коэффициента мощности, устанавливая такое его значение, при котором работа синхронной машины становится наиболее экономичной. Синхронные машины обратимы и могут работать как в режиме генератора, так и в режиме двигателя. Синхронные генераторы составляют основу электротехнического оборудования электростанций, т. е. практически вся электроэнергия вырабатывается синхронными генераторами. Единичная мощность современных синхронных генераторов достигает миллиона киловатт и более. Синхронные двигатели применяются главным образом для привода устройств большой мощности. Такие двигатели по своим технико-экономическим показателям превосходят двигатели других типов. В крупных электроэнергетических установках синхронные машины иногда используются в качестве компенсаторов — генераторов реактивной мощности, позволяющих повысить коэффициент мощности всей установки. В данном разделе рассмотрены главным образом трехфазные синхронные машины. Приведены также сведения по некоторым типам синхронных двигателей весьма малой мощности, применяемым в устройствах автоматики и приборной техники. Глава 19• Способы возбуждения и устройство синхронных машин § 19.1. Возбуждение синхронных машинПри рассмотрении принципа действия синхронного генератора (см. § 6.1) было установлено, что на роторе синхронного генератора расположен источник МДС (индуктор), создающий в генераторе магнитное поле. С помощью приводного двигателя (ПД) ротор генератора приводится во вращение с синхронной частотой n1. При этом магнитное поле ротора также вращается и, сцепляясь с обмоткой статора, наводит в ней ЭДС. Синхронные двигатели конструктивно почти не отличаются от синхронных генераторов. Они также состоят из статора с обмоткой и ротора. Поэтому независимо от режима работы любая синхронная машина нуждается в процессе возбуждения - наведения в ней магнитного поля. До последнего времени для питания обмотки возбуждения применялись специальные генераторы постоянного тока независимого возбуждения (см. § 28.2), называемые возбудителями В (рис. 19.1, а), обмотка возбуждения которого (ОВ) получала питание постоянного тока от другого генератора (параллельного возбуждения), называемого подвозбудителем (ПВ). Ротор синхронной машины и якоря возбудителя и подвозбудителя располагаются на общем валу и вращаются одновременно. При этом ток в обмотку возбуждения синхронной машины поступает через контактные кольца и щетки. Для регулирования тока возбуждения применяют регулировочные реостаты, включаемые в цепи возбуждения возбудителя (r1) и подвозбудителя (r2). В синхронных генераторах средней и большой мощности процесс регулирования тока возбуждения автоматизируют.
Рис. 19.1. Контактная (а) и бесконтактная (б) системы электромагнитного возбуждения синхронных генераторов Регулировка тока возбуждения синхронного генератора в этом случае осуществляется изменением возбуждения индукторного генератора. Получила применение в синхронных генераторах бесконтактная система электромагнитного возбуждения, при которой синхронный генератор не имеет контактных колец на роторе. В качестве возбудителя и в этом случае применяют генератор переменного тока (рис. 19.1, 5), у которого обмотка 2, в которой наводится ЭДС (обмотка якоря), расположена на роторе, а обмотка возбуждения 1 расположена на статоре. В результате обмотка якоря возбудителя и обмотка возбуждения синхронной машины оказываются вращающимися, и их электрическое соединение осуществляется непосредственно, без контактных колец и щеток. Но так как возбудитель является генератором переменного тока, а обмотку возбуждения необходимо питать постоянным током, то на выходе обмотки якоря возбудителя включают полупроводниковый преобразователь 3, закрепленный на валу синхронной машины и вращающийся вместе с обмоткой возбуждения синхронной машины и обмоткой якоря возбудителя. Питание постоянным током обмотки возбуждения 1 возбудителя осуществляется от подвозбудителя (ПВ) — генератора постоянного тока. Отсутствие скользящих контактов в цепи возбуждения синхронной машины позволяет повысить ее эксплуатационную надежность и увеличить КПД. В синхронных генераторах, в том числе гидрогенераторах (см. § 19.2), получил распространение принцип самовозбуждения (рис. 19.2, а), когда энергия переменного тока, необходимая для возбуждения, отбирается от обмотки статора синхронного генератора и через понижающий трансформатор и выпрямительный полупроводниковый преобразователь (ПП) преобразуется в энергию постоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счет остаточного магнетизма магнитопровода машины. Рис. 19.2. Принцип самовозбуждения синхронных генераторов На рис. 19.2, б представлена структурная схема автоматической системы самовозбуждения синхронного генератора (СГ) с выпрямительным трансформатором (ВТ) и тиристорным преобразователем (ТП), через которые электроэнергия переменного тока из цепи статора СГ после преобразования в постоянный ток подается в обмотку возбуждения. Управление тиристорным преобразователем осуществляется посредством автоматического регулятора побуждения АРВ, на вход которого поступают сигналы напряжения на выходе СГ (через трансформатор напряжения ТН) и тока нагрузки СГ (от трансформатора тока ТТ). Схема содержит блок защиты БЗ, обеспечивающий защиту обмотки возбуждения и тиристорного преобразователя ТП от перенапряжений и токовой перегрузки. В современных синхронных двигателях для возбуждения применяют тиристорные возбудительные устройства, включаемые в сеть переменного тока и осуществляющие автоматическое управление током возбуждения во всевозможных режимах работы двигателя, в том числе и переходных. Такой способ возбуждения является наиболее надежным и экономичным, так как КПД тиристорных возбудительных устройств выше, чем у генераторов постоянного тока. Промышленностью выпускаются тиристорные возбудительные устройства на различные напряжения возбуждения с допустимым значением постоянного тока 320 А. Наибольшее распространение в современных сериях синхронных двигателей получили возбудительные тиристорные устройства типов ТЕ8-320/48 (напряжение возбуждения 48 В) и ТЕ8-320/75 (напряжение возбуждения 75 В). Мощность, затрачиваемая на возбуждение, обычно составляет от 0,2 до 5% полезной мощности машины (меньшее значение относится к машинам большой мощности). В синхронных машинах малой мощности находит применение принцип возбуждения постоянными магнитами, когда на роторе машины располагаются постоянные магниты. Такой способ возбуждения дает возможность избавить машину от обмотки возбуждения. В результате конструкция машины упрощается, становится более экономичной и надежной. Однако из-за дефицитности материалов для изготовления постоянных магнитов с большим запасом магнитной энергии и сложности их обработки применение возбуждения постоянными магнитами ограничивается лишь машинами мощностью не более нескольких киловатт (см. §23.1). studfiles.net 4 РазделСИНХРОННЫЕ МАШИНЫ Способы возбуждения и устройство синхронных машин Магнитное поле и характеристики синхронных генераторов Параллельная работа синхронных генераторов Синхронный двигатель и синхронный компенсатор Синхронные машины специального назначения Синхронные машины — это бесколлекторные машины переменного тока. По своему устройству они отличаются от асинхронных машин лишь конструкцией ротора, который может быть явнополюсным или неявнополюсным. Что же касается свойств, то синхронные машины отличаются синхронной частотой вращения ротора (n2 = n1 = const) при любой нагрузке, а также возможностью регулирования коэффициента мощности, устанавливая такое его значение, при котором работа синхронной машины становится наиболее экономичной. Синхронные машины обратимы и могут работать как в режиме генератора, так и в режиме двигателя. Синхронные генераторы составляют основу электротехнического оборудования электростанций, т. е. практически вся электроэнергия вырабатывается синхронными генераторами. Единичная мощность современных синхронных генераторов достигает миллиона киловатт и более. Синхронные двигатели применяются главным образом для привода устройств большой мощности. Такие двигатели по своим технико-экономическим показателям превосходят двигатели других типов. В крупных электроэнергетических установках синхронные машины иногда используются в качестве компенсаторов — генераторов реактивной мощности, позволяющих повысить коэффициент мощности всей установки. В данном разделе рассмотрены главным образом трехфазные синхронные машины. Приведены также сведения по некоторым типам синхронных двигателей весьма малой мощности, применяемым в устройствах автоматики и приборной техники. Глава 19• Способы возбуждения и устройство синхронных машин § 19.1. Возбуждение синхронных машинПри рассмотрении принципа действия синхронного генератора (см. § 6.1) было установлено, что на роторе синхронного генератора расположен источник МДС (индуктор), создающий в генераторе магнитное поле. С помощью приводного двигателя (ПД) ротор генератора приводится во вращение с синхронной частотой n1. При этом магнитное поле ротора также вращается и, сцепляясь с обмоткой статора, наводит в ней ЭДС. Синхронные двигатели конструктивно почти не отличаются от синхронных генераторов. Они также состоят из статора с обмоткой и ротора. Поэтому независимо от режима работы любая синхронная машина нуждается в процессе возбуждения - наведения в ней магнитного поля. Основным способом возбуждения синхронных машин является электромагнитное возбуждение, сущность которого состоит в том, что на полюсах ротора располагают обмотку возбуждения. При прохождении по этой обмотке постоянного тока возникает МДС возбуждения, которая наводит в магнитной системе машины магнитное поле. До последнего времени для питания обмотки возбуждения применялись специальные генераторы постоянного тока независимого возбуждения (см. § 28.2), называемые возбудителями В (рис. 19.1, а), обмотка возбуждения которого (ОВ) получала питание постоянного тока от другого генератора (параллельного возбуждения), называемого подвозбудителем (ПВ). Ротор синхронной машины и якоря возбудителя и подвозбудителя располагаются на общем валу и вращаются одновременно. При этом ток в обмотку возбуждения синхронной машины поступает через контактные кольца и щетки. Для регулирования тока возбуждения применяют регулировочные реостаты, включаемые в цепи возбуждения возбудителя (r1) и подвозбудителя (r2). В синхронных генераторах средней и большой мощности процесс регулирования тока возбуждения автоматизируют. В синхронных генераторах большой мощности — турбогенераторах (см. § 19.2) — иногда в качестве возбудителя применяют генераторы переменного тока индукторного типа (см. § 23.6). На выходе такого генератора включают полупроводниковый выпрямитель.
Рис. 19.1. Контактная (а) и бесконтактная (б) системы электромагнитного возбуждения синхронных генераторов Регулировка тока возбуждения синхронного генератора в этом случае осуществляется изменением возбуждения индукторного генератора. Получила применение в синхронных генераторах бесконтактная система электромагнитного возбуждения, при которой синхронный генератор не имеет контактных колец на роторе. В качестве возбудителя и в этом случае применяют генератор переменного тока (рис. 19.1, 5), у которого обмотка 2, в которой наводится ЭДС (обмотка якоря), расположена на роторе, а обмотка возбуждения 1 расположена на статоре. В результате обмотка якоря возбудителя и обмотка возбуждения синхронной машины оказываются вращающимися, и их электрическое соединение осуществляется непосредственно, без контактных колец и щеток. Но так как возбудитель является генератором переменного тока, а обмотку возбуждения необходимо питать постоянным током, то на выходе обмотки якоря возбудителя включают полупроводниковый преобразователь 3, закрепленный на валу синхронной машины и вращающийся вместе с обмоткой возбуждения синхронной машины и обмоткой якоря возбудителя. Питание постоянным током обмотки возбуждения 1 возбудителя осуществляется от подвозбудителя (ПВ) — генератора постоянного тока. Отсутствие скользящих контактов в цепи возбуждения синхронной машины позволяет повысить ее эксплуатационную надежность и увеличить КПД. В синхронных генераторах, в том числе гидрогенераторах (см. § 19.2), получил распространение принцип самовозбуждения (рис. 19.2, а), когда энергия переменного тока, необходимая для возбуждения, отбирается от обмотки статора синхронного генератора и через понижающий трансформатор и выпрямительный полупроводниковый преобразователь (ПП) преобразуется в энергию постоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счет остаточного магнетизма магнитопровода машины.
Рис. 19.2. Принцип самовозбуждения синхронных генераторов На рис. 19.2, б представлена структурная схема автоматической системы самовозбуждения синхронного генератора (СГ) с выпрямительным трансформатором (ВТ) и тиристорным преобразователем (ТП), через которые электроэнергия переменного тока из цепи статора СГ после преобразования в постоянный ток подается в обмотку возбуждения. Управление тиристорным преобразователем осуществляется посредством автоматического регулятора побуждения АРВ, на вход которого поступают сигналы напряжения на выходе СГ (через трансформатор напряжения ТН) и тока нагрузки СГ (от трансформатора тока ТТ). Схема содержит блок защиты БЗ, обеспечивающий защиту обмотки возбуждения и тиристорного преобразователя ТП от перенапряжений и токовой перегрузки. В современных синхронных двигателях для возбуждения применяют тиристорные возбудительные устройства, включаемые в сеть переменного тока и осуществляющие автоматическое управление током возбуждения во всевозможных режимах работы двигателя, в том числе и переходных. Такой способ возбуждения является наиболее надежным и экономичным, так как КПД тиристорных возбудительных устройств выше, чем у генераторов постоянного тока. Промышленностью выпускаются тиристорные возбудительные устройства на различные напряжения возбуждения с допустимым значением постоянного тока 320 А. Наибольшее распространение в современных сериях синхронных двигателей получили возбудительные тиристорные устройства типов ТЕ8-320/48 (напряжение возбуждения 48 В) и ТЕ8-320/75 (напряжение возбуждения 75 В). Мощность, затрачиваемая на возбуждение, обычно составляет от 0,2 до 5% полезной мощности машины (меньшее значение относится к машинам большой мощности). В синхронных машинах малой мощности находит применение принцип возбуждения постоянными магнитами, когда на роторе машины располагаются постоянные магниты. Такой способ возбуждения дает возможность избавить машину от обмотки возбуждения. В результате конструкция машины упрощается, становится более экономичной и надежной. Однако из-за дефицитности материалов для изготовления постоянных магнитов с большим запасом магнитной энергии и сложности их обработки применение возбуждения постоянными магнитами ограничивается лишь машинами мощностью не более нескольких киловатт (см. §23.1). studfiles.net 4 РазделСИНХРОННЫЕ МАШИНЫ Способы возбуждения и устройство синхронных машин Магнитное поле и характеристики синхронных генераторов Параллельная работа синхронных генераторов Синхронный двигатель и синхронный компенсатор Синхронные машины специального назначения Синхронные машины — это бесколлекторные машины переменного тока. По своему устройству они отличаются от асинхронных машин лишь конструкцией ротора, который может быть явнополюсным или неявнополюсным. Что же касается свойств, то синхронные машины отличаются синхронной частотой вращения ротора (n2 = n1 = const) при любой нагрузке, а также возможностью регулирования коэффициента мощности, устанавливая такое его значение, при котором работа синхронной машины становится наиболее экономичной. Синхронные машины обратимы и могут работать как в режиме генератора, так и в режиме двигателя. Синхронные генераторы составляют основу электротехнического оборудования электростанций, т. е. практически вся электроэнергия вырабатывается синхронными генераторами. Единичная мощность современных синхронных генераторов достигает миллиона киловатт и более. Синхронные двигатели применяются главным образом для привода устройств большой мощности. Такие двигатели по своим технико-экономическим показателям превосходят двигатели других типов. В крупных электроэнергетических установках синхронные машины иногда используются в качестве компенсаторов — генераторов реактивной мощности, позволяющих повысить коэффициент мощности всей установки. В данном разделе рассмотрены главным образом трехфазные синхронные машины. Приведены также сведения по некоторым типам синхронных двигателей весьма малой мощности, применяемым в устройствах автоматики и приборной техники. Глава 19• Способы возбуждения и устройство синхронных машин § 19.1. Возбуждение синхронных машинПри рассмотрении принципа действия синхронного генератора (см. § 6.1) было установлено, что на роторе синхронного генератора расположен источник МДС (индуктор), создающий в генераторе магнитное поле. С помощью приводного двигателя (ПД) ротор генератора приводится во вращение с синхронной частотой n1. При этом магнитное поле ротора также вращается и, сцепляясь с обмоткой статора, наводит в ней ЭДС. Синхронные двигатели конструктивно почти не отличаются от синхронных генераторов. Они также состоят из статора с обмоткой и ротора. Поэтому независимо от режима работы любая синхронная машина нуждается в процессе возбуждения - наведения в ней магнитного поля. Основным способом возбуждения синхронных машин является электромагнитное возбуждение, сущность которого состоит в том, что на полюсах ротора располагают обмотку возбуждения. При прохождении по этой обмотке постоянного тока возникает МДС возбуждения, которая наводит в магнитной системе машины магнитное поле. До последнего времени для питания обмотки возбуждения применялись специальные генераторы постоянного тока независимого возбуждения (см. § 28.2), называемые возбудителями В (рис. 19.1, а), обмотка возбуждения которого (ОВ) получала питание постоянного тока от другого генератора (параллельного возбуждения), называемого подвозбудителем (ПВ). Ротор синхронной машины и якоря возбудителя и подвозбудителя располагаются на общем валу и вращаются одновременно. При этом ток в обмотку возбуждения синхронной машины поступает через контактные кольца и щетки. Для регулирования тока возбуждения применяют регулировочные реостаты, включаемые в цепи возбуждения возбудителя (r1) и подвозбудителя (r2). В синхронных генераторах средней и большой мощности процесс регулирования тока возбуждения автоматизируют. В синхронных генераторах большой мощности — турбогенераторах (см. § 19.2) — иногда в качестве возбудителя применяют генераторы переменного тока индукторного типа (см. § 23.6). На выходе такого генератора включают полупроводниковый выпрямитель.
Рис. 19.1. Контактная (а) и бесконтактная (б) системы электромагнитного возбуждения синхронных генераторов Регулировка тока возбуждения синхронного генератора в этом случае осуществляется изменением возбуждения индукторного генератора. Получила применение в синхронных генераторах бесконтактная система электромагнитного возбуждения, при которой синхронный генератор не имеет контактных колец на роторе. В качестве возбудителя и в этом случае применяют генератор переменного тока (рис. 19.1, б), у которого обмотка 2, в которой наводится ЭДС (обмотка якоря), расположена на роторе, а обмотка возбуждения 1 расположена на статоре. В результате обмотка якоря возбудителя и обмотка возбуждения синхронной машины оказываются вращающимися, и их электрическое соединение осуществляется непосредственно, без контактных колец и щеток. Но так как возбудитель является генератором переменного тока, а обмотку возбуждения необходимо питать постоянным током, то на выходе обмотки якоря возбудителя включают полупроводниковый преобразователь 3, закрепленный на валу синхронной машины и вращающийся вместе с обмоткой возбуждения синхронной машины и обмоткой якоря возбудителя. Питание постоянным током обмотки возбуждения 1 возбудителя осуществляется от подвозбудителя (ПВ) — генератора постоянного тока. Отсутствие скользящих контактов в цепи возбуждения синхронной машины позволяет повысить ее эксплуатационную надежность и увеличить КПД. В синхронных генераторах, в том числе гидрогенераторах (см. § 19.2), получил распространение принцип самовозбуждения (рис. 19.2, а), когда энергия переменного тока, необходимая для возбуждения, отбирается от обмотки статора синхронного генератора и через понижающий трансформатор и выпрямительный полупроводниковый преобразователь (ПП) преобразуется в энергию постоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счет остаточного магнетизма магнитопровода машины.
Рис. 19.2. Принцип самовозбуждения синхронных генераторов На рис. 19.2, б представлена структурная схема автоматической системы самовозбуждения синхронного генератора (СГ) с выпрямительным трансформатором (ВТ) и тиристорным преобразователем (ТП), через которые электроэнергия переменного тока из цепи статора СГ после преобразования в постоянный ток подается в обмотку возбуждения. Управление тиристорным преобразователем осуществляется посредством автоматического регулятора побуждения АРВ, на вход которого поступают сигналы напряжения на выходе СГ (через трансформатор напряжения ТН) и тока нагрузки СГ (от трансформатора тока ТТ). Схема содержит блок защиты БЗ, обеспечивающий защиту обмотки возбуждения и тиристорного преобразователя ТП от перенапряжений и токовой перегрузки. В современных синхронных двигателях для возбуждения применяют тиристорные возбудительные устройства, включаемые в сеть переменного тока и осуществляющие автоматическое управление током возбуждения во всевозможных режимах работы двигателя, в том числе и переходных. Такой способ возбуждения является наиболее надежным и экономичным, так как КПД тиристорных возбудительных устройств выше, чем у генераторов постоянного тока. Промышленностью выпускаются тиристорные возбудительные устройства на различные напряжения возбуждения с допустимым значением постоянного тока 320 А. Наибольшее распространение в современных сериях синхронных двигателей получили возбудительные тиристорные устройства типов ТЕ8-320/48 (напряжение возбуждения 48 В) и ТЕ8-320/75 (напряжение возбуждения 75 В). Мощность, затрачиваемая на возбуждение, обычно составляет от 0,2 до 5% полезной мощности машины (меньшее значение относится к машинам большой мощности). В синхронных машинах малой мощности находит применение принцип возбуждения постоянными магнитами, когда на роторе машины располагаются постоянные магниты. Такой способ возбуждения дает возможность избавить машину от обмотки возбуждения. В результате конструкция машины упрощается, становится более экономичной и надежной. Однако из-за дефицитности материалов для изготовления постоянных магнитов с большим запасом магнитной энергии и сложности их обработки применение возбуждения постоянными магнитами ограничивается лишь машинами мощностью не более нескольких киловатт (см. §23.1). studfiles.net 7.9 Возбуждение синхронных машинНезависимо от режима работы любая синхронная машина нуждается в процессе возбуждения – наведения в ней магнитного поля. Основным способом возбуждения синхронных машин является электромагнитное возбуждение, которое состоит в том, что на полюсах ротора располагают обмотку возбуждения. С помощью приводного двигателя ротор генератора приводится во вращение. При прохождении по обмотке постоянного тока возникает МДС возбуждения, которая наводит в магнитной системе машины магнитное поле. Магнитное поле ротора, вращаясь и сцепляясь с обмоткой статора, наводит в ней ЭДС. Существуют два способа электромагнитного возбуждения: контактный и бесконтактный. Контактный способ возбуждения состоит в том, что для питания обмотки возбуждения применялись специальные генераторы постоянного тока, называемые возбудителями. При этом ток в обмотку возбуждения поступает через контактные кольца и щетки. В генераторах с бесконтактной системой электромагнитного возбуждения генератор не имеет контактных колец. В качестве возбудителя применяют генератор переменного тока, у которого обмотка якоря расположена на роторе, а обмотка возбуждения – на статоре. В результате обе обмотки оказываются вращающимися, и их электрическое соединение осуществляется непосредственно, без контактных колец и щеток. На выходе обмотки якоря включают полупроводниковый преобразователь, т. к. обмотку возбуждения нужно питать постоянным током. В синхронных генераторах получил распространение принцип самовозбуждения, когда энергия переменного тока, необходимая для возбуждения, отбирается от обмотки статора синхронного генератора через понижающий трансформатор и посредством выпрямительного полупроводникового преобразователя преобразуется в энергию постоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счет остаточного магнетизма магнитопровода машины. В современных синхронных двигателях для возбуждения применяют тиристорные возбудительные устройства, включаемые в сеть переменного тока и осуществляющие автоматическое управление током возбуждения во всевозможных режимах работы двигателя, в том числе и переходных. Такой способ возбуждения является наиболее надежным и экономичным. В синхронных машинах малой мощности применяется принцип возбуждения постоянными магнитами, когда на роторе машины располагаются постоянные магниты. Такой способ позволяет избавиться от обмотки возбуждения, что делает конструкцию машины проще, экономичнее и надежнее. Но из-за дефицитности материалов для изготовления постоянных магнитов применение данного возбуждения ограничено машинами малой мощности. 7.10 Параллельная работа синхронных генераторовНа электрических станциях обычно устанавливают несколько синхронных генераторов, включенных параллельно для совместной работы. Применение нескольких генераторов вместо одного суммарной мощности необходимо для обеспечения бесперебойного электроснабжения в случае аварии или отключения одного для ремонта. При включении синхронного генератора в сеть на параллельную работу необходимо соблюдать следующие условия: ЭДС генератора Е0 в момент подключения его к сети должна быть равной и противоположной по фазе напряжению сети ; частота ЭДС генератора должна быть равной частоте напряжения сетии порядок следования фаз на выводах генератора должен быть таким же, что и на зажимах сети. Приведение генератора в состояние, удовлетворяющее всем указанным условиям, называют синхронизацией. Несоблюдение условий приводит к появлению в обмотке статора уравнительных токов, высокое значение которых может привести к аварии. Включить генератор в сеть с параллельно работающими генераторами можно способами точной синхронизации или самосинхронизации. Суть способа точной синхронизации в том, что перед включением генератора в сеть, его приводят в состояние, удовлетворяющее всем перечисленным условиям. Момент соблюдения этих условий (момент синхронизации) определяют прибором, который называется синхроскопом. По конструкции синхроскопы делятся на ламповые и стрелочные. При включении ламп момент синхронизации будет соответствовать одновременному погасанию всех ламп. В этот момент и следует замкнуть рубильник, подключающий генератор к сети. При самосинхронизации ротор невозбужденного генератора приводят во вращение первичным двигателем до частоты вращения, отличающейся от синхронной частоты не более чем на 2-5%. Затем генератор подключают к сети. В момент подключения генератора к сети в обмотке статора возникает бросок тока, величина которого превышает номинальное значение. Следующим этапом подключают обмотку возбуждения к источнику постоянного тока и синхронный генератор под действием электромагнитного момента, действующего в его роторе, втягивается в синхронизм, то есть частота вращения ротора становится синхронной. При этом ток на статоре быстро уменьшается. Способом самосинхронизации включают на параллельную работу синхронные генераторы мощностью до 500 МВт. studfiles.net Возбуждение синхронных машинЭлектротехника Возбуждение синхронных машинпросмотров - 1471 Способы возбуждения и устройство синхронных машин Синхронные машины специального назначения Синхронный двигатель и синхронный компенсатор Параллельная работа синхронных генераторов Магнитное поле и характеристики синхронных генераторов Способы возбуждения и устройство синхронных машин СИНХРОННЫЕ МАШИНЫ Раздел Синхронные машины — это бесколлекторные машины переменного тока. По своему устройству они отличаются от асинхронных машин лишь конструкцией ротора, который может быть явнополюсным или неявнополюсным. Что же касается свойств, то синхронные машины отличаются синхронной частотой вращения ротора (n2 = n1 = const) при любой нагрузке, а также возможностью регулирования коэффициента мощности, устанавливая такое его значение, при котором работа синхронной машины становится наиболее экономичной. Синхронные машины обратимы и могут работать как в режиме генератора, так и в режиме двигателя. Синхронные генераторы составляют основу электротехнического оборудования электростанций, т. е. практически вся электроэнергия вырабатывается синхронными генераторами. Единичная мощность современных синхронных генераторов достигает миллиона киловатт и более. Синхронные двигатели применяются главным образом для привода устройств большой мощности. Такие двигатели по своим технико-экономическим показателям превосходят двигатели других типов. В крупных электроэнергетических установках синхронные машины иногда используются в качестве компенсаторов — генераторов реактивной мощности, позволяющих повысить коэффициент мощности всей установки. В данном разделе рассмотрены главным образом трехфазные синхронные машины. Приведены также сведения по некоторым типам синхронных двигателей весьма малой мощности, применяемым в устройствах автоматики и приборной техники. ГЛАВА 19 При рассмотрении принципа действия синхронного генератора (см. § 6.1) было установлено, что на роторе синхронного генератора расположен источник МДС (индуктор), создающий в генераторе магнитное поле. С помощью приводного двигателя (ПД) ротор генератора приводится во вращение с синхронной частотой n1. При этом магнитное поле ротора также вращается и, сцепляясь с обмоткой статора, наводит в ней ЭДС. Синхронные двигатели конструктивно почти не отличаются от синхронных генераторов. Οʜᴎ также состоят из статора с обмоткой и ротора. По этой причине независимо от режима работы любая синхронная машина нуждается в процессе возбуждения - наведения в ней магнитного поля. Основным способом возбуждения синхронных машин является электромагнитноевозбуждение, сущность которого состоит в том, что на полюсах ротора располагают обмотку возбуждения. При прохождении по этой обмотке постоянного тока возникает МДС возбуждения, которая наводит в магнитной системе машины магнитное поле. До последнего времени для питания обмотки возбуждения применялись специальные генераторы постоянного тока независимого возбуждения (см. § 28.2), называемые возбудителями В (рис. 19.1, а), обмотка возбуждения которого (ОВ) получала питание постоянного тока от другого генератора (параллельного возбуждения), называемого подвозбудителем (ПВ). Ротор синхронной машины и якоря возбудителя и подвозбудителя располагаются на общем валу и вращаются одновременно. При этом ток в обмотку возбуждения синхронной машины поступает через контактные кольца и щетки. Для регулирования тока возбуждения применяют регулировочные реостаты, включаемые в цепи возбуждения возбудителя (r1)и подвозбудителя (r2). В синхронных генераторах средней и большой мощности процесс регулирования тока возбуждения автоматизируют. В синхронных генераторах большой мощности — турбогенераторах (см. § 19.2) — иногда в качестве возбудителя применяют генераторы переменного тока индукторного типа (см. § 23.6). На выходе такого генератора включают полупроводниковый выпрямитель. Рис. 19.1. Контактная (а) и бесконтактная (б) системы электромагнитного возбуждения синхронных генераторов Регулировка тока возбуждения синхронного генератора в этом случае осуществляется изменением возбуждения индукторного генератора. Получила применение в синхронных генераторах бесконтактная система электромагнитного возбуждения, при которой синхронный генератор не имеет контактных колец на роторе. В качестве возбудителя и в этом случае применяют генератор переменного тока (рис. 19.1, 5), у которого обмотка 2, в которой наводится ЭДС (обмотка якоря), расположена на роторе, а обмотка возбуждения 1 расположена на статоре. В результате обмотка якоря возбудителя и обмотка возбуждения синхронной машины оказываются вращающимися, и их электрическое соединение осуществляется непосредственно, без контактных колец и щеток. Но так как возбудитель является генератором переменного тока, а обмотку возбуждения крайне важно питать постоянным током, то на выходе обмотки якоря возбудителя включают полупроводниковый преобразователь 3, закрепленный на валу синхронной машины и вращающийся вместе с обмоткой возбуждения синхронной машины и обмоткой якоря возбудителя. Питание постоянным током обмотки возбуждения 1 возбудителя осуществляется от подвозбудителя (ПВ) — генератора постоянного тока. Отсутствие скользящих контактов в цепи возбуждения синхронной машины позволяет повысить ее эксплуатационную надежность и увеличить КПД. В синхронных генераторах, в том числе гидрогенераторах (см. § 19.2), получил распространение принцип самовозбуждения (рис. 19.2, а), когда энергия переменного тока, необходимая для возбуждения, отбирается от обмотки статора синхронного генератора и через понижающий трансформатор и выпрямительный полупроводниковый преобразователь (ПП) преобразуется в энергию постоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счет остаточного магнетизма магнитопровода машины. Рис. 19.2. Принцип самовозбуждения синхронных генераторов На рис. 19.2, б представлена структурная схема автоматической системы самовозбуждения синхронного генератора (СГ) с выпрямительным трансформатором (ВТ) и тиристорным преобразователем (ТП), через которые электроэнергия переменного тока из цепи статора СГ после преобразования в постоянный ток подается в обмотку возбуждения. Управление тиристорным преобразователем осуществляется посредством автоматического регулятора побуждения АРВ, на вход которого поступают сигналы напряжения на выходе СГ (через трансформатор напряжения ТН) и тока нагрузки СГ (от трансформатора тока ТТ). Схема содержит блок защиты БЗ, обеспечивающий защиту обмотки возбуждения и тиристорного преобразователя ТП от перенапряжений и токовой перегрузки. В современных синхронных двигателях для возбуждения применяют тиристорные возбудительные устройства, включаемые в сеть переменного тока и осуществляющие автоматическое управление током возбуждения во всевозможных режимах работы двигателя, в том числе и переходных. Такой способ возбуждения является наиболее надежным и экономичным, так как КПД тиристорных возбудительных устройств выше, чем у генераторов постоянного тока. Промышленностью выпускаются тиристорные возбудительные устройства на различные напряжения возбуждения с допустимым значением постоянного тока 320 А. Наибольшее распространение в современных сериях синхронных двигателей получили возбудительные тиристорные устройства типов ТЕ8-320/48 (напряжение возбуждения 48 В) и ТЕ8-320/75 (напряжение возбуждения 75 В). Мощность, затрачиваемая на возбуждение, обычно составляет от 0,2 до 5% полезной мощности машины (меньшее значение относится к машинам большой мощности). В синхронных машинах малой мощности находит применение принцип возбуждения постоянными магнитами, когда на роторе машины располагаются постоянные магниты. Такой способ возбуждения дает возможность избавить машину от обмотки возбуждения. В результате конструкция машины упрощается, становится более экономичной и надежной. При этом из-за дефицитности материалов для изготовления постоянных магнитов с большим запасом магнитной энергии и сложности их обработки применение возбуждения постоянными магнитами ограничивается лишь машинами мощностью не более нескольких киловатт (см. §23.1). Читайте такжеСпособы возбуждения и устройство синхронных машин Синхронные машины специального назначения Синхронный двигатель и синхронный компенсатор Параллельная работа синхронных генераторов Магнитное поле и характеристики синхронных генераторов Способы... [читать подробенее] oplib.ru Возбуждение синхронных машин⇐ ПредыдущаяСтр 49 из 85Следующая ⇒
При рассмотрении принципа действия синхронного генератора (см. § 6.1) было установлено, что на роторе синхронного генератора расположен источник МДС (индуктор), создающий в генераторе магнитное поле. С помощью приводного двигателя (ПД) ротор генератора приводится во вращение с синхронной частотой n1. При этом магнитное поле ротора также вращается и, сцепляясь с обмоткой статора, наводит в ней ЭДС. Синхронные двигатели конструктивно почти не отличаются от синхронных генераторов. Они также состоят из статора с обмоткой и ротора. Поэтому независимо от режима работы любая синхронная машина нуждается в процессе возбуждения - наведения в ней магнитного поля. Основным способом возбуждения синхронных машин является электромагнитноевозбуждение, сущность которого состоит в том, что на полюсах ротора располагают обмотку возбуждения. При прохождении по этой обмотке постоянного тока возникает МДС возбуждения, которая наводит в магнитной системе машины магнитное поле. До последнего времени для питания обмотки возбуждения применялись специальные генераторы постоянного тока независимого возбуждения (см. § 28.2), называемые возбудителями В (рис. 19.1, а), обмотка возбуждения которого (ОВ) получала питание постоянного тока от другого генератора (параллельного возбуждения), называемого подвозбудителем (ПВ). Ротор синхронной машины и якоря возбудителя и подвозбудителя располагаются на общем валу и вращаются одновременно. При этом ток в обмотку возбуждения синхронной машины поступает через контактные кольца и щетки. Для регулирования тока возбуждения применяют регулировочные реостаты, включаемые в цепи возбуждения возбудителя (r1)и подвозбудителя (r2). В синхронных генераторах средней и большой мощности процесс регулирования тока возбуждения автоматизируют. В синхронных генераторах большой мощности — турбогенераторах (см. § 19.2) — иногда в качестве возбудителя применяют генераторы переменного тока индукторного типа (см. § 23.6). На выходе такого генератора включают полупроводниковый выпрямитель.
Рис. 19.1. Контактная (а) и бесконтактная (б) системы электромагнитного возбуждения синхронных генераторов
Регулировка тока возбуждения синхронного генератора в этом случае осуществляется изменением возбуждения индукторного генератора. Получила применение в синхронных генераторах бесконтактная система электромагнитного возбуждения, при которой синхронный генератор не имеет контактных колец на роторе. В качестве возбудителя и в этом случае применяют генератор переменного тока (рис. 19.1, 5), у которого обмотка 2, в которой наводится ЭДС (обмотка якоря), расположена на роторе, а обмотка возбуждения 1 расположена на статоре. В результате обмотка якоря возбудителя и обмотка возбуждения синхронной машины оказываются вращающимися, и их электрическое соединение осуществляется непосредственно, без контактных колец и щеток. Но так как возбудитель является генератором переменного тока, а обмотку возбуждения необходимо питать постоянным током, то на выходе обмотки якоря возбудителя включают полупроводниковый преобразователь 3, закрепленный на валу синхронной машины и вращающийся вместе с обмоткой возбуждения синхронной машины и обмоткой якоря возбудителя. Питание постоянным током обмотки возбуждения 1 возбудителя осуществляется от подвозбудителя (ПВ) — генератора постоянного тока. Отсутствие скользящих контактов в цепи возбуждения синхронной машины позволяет повысить ее эксплуатационную надежность и увеличить КПД. В синхронных генераторах, в том числе гидрогенераторах (см. § 19.2), получил распространение принцип самовозбуждения (рис. 19.2, а), когда энергия переменного тока, необходимая для возбуждения, отбирается от обмотки статора синхронного генератора и через понижающий трансформатор и выпрямительный полупроводниковый преобразователь (ПП) преобразуется в энергию постоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счет остаточного магнетизма магнитопровода машины.
Рис. 19.2. Принцип самовозбуждения синхронных генераторов
На рис. 19.2, б представлена структурная схема автоматической системы самовозбуждения синхронного генератора (СГ) с выпрямительным трансформатором (ВТ) и тиристорным преобразователем (ТП), через которые электроэнергия переменного тока из цепи статора СГ после преобразования в постоянный ток подается в обмотку возбуждения. Управление тиристорным преобразователем осуществляется посредством автоматического регулятора побуждения АРВ, на вход которого поступают сигналы напряжения на выходе СГ (через трансформатор напряжения ТН) и тока нагрузки СГ (от трансформатора тока ТТ). Схема содержит блок защиты БЗ, обеспечивающий защиту обмотки возбуждения и тиристорного преобразователя ТП от перенапряжений и токовой перегрузки. В современных синхронных двигателях для возбуждения применяют тиристорные возбудительные устройства, включаемые в сеть переменного тока и осуществляющие автоматическое управление током возбуждения во всевозможных режимах работы двигателя, в том числе и переходных. Такой способ возбуждения является наиболее надежным и экономичным, так как КПД тиристорных возбудительных устройств выше, чем у генераторов постоянного тока. Промышленностью выпускаются тиристорные возбудительные устройства на различные напряжения возбуждения с допустимым значением постоянного тока 320 А. Наибольшее распространение в современных сериях синхронных двигателей получили возбудительные тиристорные устройства типов ТЕ8-320/48 (напряжение возбуждения 48 В) и ТЕ8-320/75 (напряжение возбуждения 75 В). Мощность, затрачиваемая на возбуждение, обычно составляет от 0,2 до 5% полезной мощности машины (меньшее значение относится к машинам большой мощности). В синхронных машинах малой мощности находит применение принцип возбуждения постоянными магнитами, когда на роторе машины располагаются постоянные магниты. Такой способ возбуждения дает возможность избавить машину от обмотки возбуждения. В результате конструкция машины упрощается, становится более экономичной и надежной. Однако из-за дефицитности материалов для изготовления постоянных магнитов с большим запасом магнитной энергии и сложности их обработки применение возбуждения постоянными магнитами ограничивается лишь машинами мощностью не более нескольких киловатт (см. §23.1). Читайте также: lektsia.com |