Eng Ru
Отправить письмо

ГОСТ Р 53769 Токовые нагрузки. Токовые нагрузки


ГОСТ Р 53769 Токовые нагрузки

Номинальное сечение жилы, мм2 Допустимые токовые нагрузки кабелей, А
одножильных многожильных**
на постоянном токе на переменном токе* на переменном токе
на воздухе  в земле на воздухе  в земле на воздухе  в земле
2,5 35 36 26 34 24 32
4 46 46 35 44 34 42
6 59 59 43 54 43 50
10 80 77 58 71 58 67
16 108 94 79 93 78 87
25 144 176 112 114 108 112
35 176 211 138 136 134 135
50 217 251 171 161 158 157
70 276 309 216 198 203 195
95 340 371 267 237 248 233
120 399 423 313 271 290 267
150 457 474 360 304 330 299
185 531 539 419 346 382 341
240 636 629 501 403 453 397
300 738 713 580 455 538 455
400 871 822 682 523 636 527
500 1030 949 800 599   -    
625/630 1221 1098 936 685
800 1437 1262 1081 773
1000 1676 1443 1227 862
*Прокладка треугольником вплотную. **Для определения токовых нагрузок четырехжильных кабелей с жилами равного сечения в четырехпроводных сетях при нагрузке во всех жилах в нормальном режиме, а также для пятижильных кабелей данные значения должны быть умножены на коэффициент 0,93.

cable812.ru

Допустимые токовые нагрузки электрических кабелей с медными жилами, рассчитанных на напряжение 0,66кВ, 1кВ, 3кВ (ГОСТ Р 53769-2010)

Приведенное ниже описание носит исключительно справочный характер и не является публичной офертой.

Номинальное сечение жилы, мм²

Допустимые токовые нагрузки кабелей, А

одножильных

многожильных**

на постоянном токе

на переменном токе*

на переменном токе

на воздухе

в земле

на воздухе

в земле

на воздухе

в земле

1,5

29

41

22

30

21

27

2,5

37

55

30

39

27

36

4

50

71

39

50

36

47

6

63

90

50

62

46

59

10

86

124

68

83

63

79

16

113

159

89

107

84

102

25

153

207

121

137

112

133

35

187

249

147

163

137

158

50

227

295

179

194

167

187

70

286

364

226

237

211

231

95

354

436

280

285

261

279

120

413

499

326

324

302

317

150

473

561

373

364

346

358

185

547

637

431

412

397

405

240

655

743

512

477

472

471

300

760

845

591

539

542

533

400

894

971

685

612

633

611

500

1054

1121

792

690

-

625/630

1252

1299

910

774

800

1481

1502

1030

856

1000

1718

1709

1143

933

* Прокладка треугольником вплотную. ** Для определения токовых нагрузок четырехжильных кабелей с жилами равного сечения, а также для пятижильных кабелей данные значения должны  быть умножены на коэффициент 0,93.

 

www.bkk.su

Токовые нагрузки - Справочник химика 21

    С целью интенсификации электросталеплавильных процессов в последние годы широко применяют высококачественные графитированные электроды, работающие при высоких удельных токовых нагрузках (30 — 35 Ом/см ). Зарубежный и отечественный опыт показывает, что получить такие электроды возможно лишь на основе специального малозольного и малосернистого, так называемого игольчатого кокса. Только игольчатых кокс может обеспечить такие необходимые свойства специальных электродов, как низкий коэффициент термического расширения и высокая электропроводимость. Потребности металлургии в таких сортах кок — сс>в за рубежом и в бывшем СССР непрерывно возрастают. [c.60]     Выполнение работы. Включают прибор согласно инструкции. Устанавливают температуру термостата колонок 50 °С, температуру термостата детектора 110°С, температуру испарителя 110 °С. Газ-носитель пропускают через колонку со скоростью 45 мл/мин, контролируя ее пенным расходомером. Подают токовую нагрузку на ДТП 130 мА. Указатель шкалы чувствительности устанавливают в положение 1 4 . После установления на хроматограмме стабильной нулевой линии в испаритель хроматографа вводят микрошприцем 0,3 мкл анализируемого раствора. Проводят семь параллельных анализов. Содержание каждого из компонентов смеси (Х,) определяют по площадям пиков по формуле (3.9) или (3.10), методом нормировки — по формуле (3.14). Результаты расчетов семи параллельных анализов вносят в таблицу. Для оценки используемого метода проводят статистическую обработку результатов анализа  [c.194]

    Щелочные никель-кадмиевые (НК) аккумуляторы по сравнению с НЖ-аккумуляторами обладают лучшей работоспособностью при пониженной температуре и повышенной токовой нагрузке. Саморазряд НК-аккумуляторов значительно меньше. Все эти преимущества связаны прежде всего со своеобразием электрохимических свойств кадмиевого электрода. Так, различие в сохранности заряда щелочных аккумуляторов объясняется тем, что железо в щелочном электролите термодинамически неустойчиво, тогда как потенциал кадмия в тех же условиях положительнее равновесного потенциала водородного электрода, и самопроизвольное окисление чистого кадмия в обескисло- [c.226]

    Они должны иметь допустимую длительную токовую нагрузку не менее 125% номинального тока электродвигателя, а номинальные токи плавких вставок предохранителей и токи уставок автоматических выключателей должны определяться в соответствии с III—I—7 ПУЭ. ------ [c.351]

    Изучение влияния плотности тока на баланс напряжения электролизера позволяет определять пути снижения удельного расхода электроэнергии. Это достигается нахождением тех составляющих баланса, которые наиболее чувствительны к изменению токовой нагрузки и в то же время имеют ощутимое влияние на общее напряженно на электролизере. [c.157]

    В помещениях классов В—I и В—1а, содержащих горючие пары или газы с удельным весом более 0,8 по отнощению к воздуху, и в помещениях класса В—II каналы должны засыпаться песком. Допустимые длительные токовые нагрузки на кабели должны приниматься по данным гл. 1—3 ПУЭ как для кабелей, проложенных в воздухе, с учетом поправочных коэффициентов на число работающих кабелей ( I—3—23 ПУЭ). [c.353]

    Проверить отсутствие задевания ротора вентилятора и дымососа путем провертывания вручную. Провести пробный пуск дутьевых вентиляторов и дымососа. Проверить токовую нагрузку, производительность и напор. Пуск вентиляторов и дымососа производить при закрытых задвижках на нагнетательной или всасывающей линии во избежание перегрузки электродвигателей. [c.408]

    Выполнение работы. Включают прибор согласно инструкции. Устанавливают температуру термостата колонок 85°С, температуру термостата детектора 120°С, температуру испарителя 120 °С. Газ-носитель пропускают через колонку со скоростью 60 мл/мин, контролируя ее пенным расходомером. Подают токовую нагрузку на ДТП 130 мА. Указатель шкалы чувствительности устанавливают в положение 1 4 . После установления на хроматограмме стабильной нулевой линии в испаритель хроматографа микрошприцем вводят 1 мкл Ус ) ацетона. Сначала из колонки выходит ацетон, затем — вода. Анализ повторяют три раза. Вследствие большого содержания ацетона его пик выходит за пределы шкалы. [c.196]

    Выполнение работы. Включают прибор согласно инструкции. Устанавливают температуру термостата колонки 85°С, температуру термостата детектора 130°С, температуру испарителя 130 °С. Газ-носитель пропускают через колонку со скоростью 60 мл/мин, контролируя ее пенным расходомером. Подают токовую нагрузку на ДТП 130 мА. Указатель шкалы чувствительности устанавливают в положение 1 4 . После установления на хроматограмме стабильной нулевой линии в испаритель хроматографа поочередно вводят микрошприцем по 0,3 мкл каждого спирта. Каждое хроматографирование повторяют три раза. На хроматограмме измеряют для каждого спирта. Усредняя результаты трех параллельных измерений /д. рассчитывают 1/ по формуле (3.1), Для спиртов нормального строения строят графики зависимости lgV д = f( , М, Ткип)> где пс — число атомов углерода, М — молекулярная масса, Гкип— температура кипения. В испаритель хроматографа вводят микрошприцем 0,3 мкл анализируемого раствора. Измеряют по хроматограмме tл для каждого спирта. Рассчитывают Уц по формуле (3.1). Сравнивая Уп каждого спирта и смеси спиртов, идентифицируют компоненты пробы неизвестного состава. Правильность идентификации [c.197]

    Выполнение работы. Включают прибор согласно инструкции. Устанавливают температуру термостата колонок 90°С, температуру детектора 160°С, температуру испарителя 170°С. Газ-носитель пропускают через колонку со скоростью 130 мл/мин, контролируя ее пенным расходомером. Подают токовую нагрузку на ДТП 140 мА, Указатель шкалы чувствительности устанавливают в положение 1 2 или 1 4 . После установления на хроматограмме стабильной нулевой линии в испаритель хроматографа вводят микрошприцем 0,8—1,0 мкл анализируемой смеси ароматических углеводородов, затем в испаритель хроматографа вводят поочередно по 0,2 мкл эталонных пре- [c.201]

    При вводе в эксплуатацию крупнотоннажных электродуговых сталеплавильных печей, оборудованных мощными трансформаторами, используют крупногабаритные графитированные электроды (диаметром 555 мм и более) с повышенными эксплуатационными характеристиками, выдерживающие высокие токовые нагрузки — до 30—32 A/ м , в отличие от обычных графитированных электродов, выдерживающих 12—15 А/см . В настоящее время электродная промышленность выпускает более 30 видов графитированных электродов и около 20 видов угольных анодов. [c.100]

    Потери электродов из-за поломок при повышенных токовых нагрузках снизились на 3,0%. [c.220]

    Лучшие результаты в работе элемента были получены при температуре 200 °С, давлении 2,8 МПа (28 кгс/см ) и применении в качестве электролита 37%-ного раствора едкого кали. Э.д.с. элемента 1,04 В. Рабочее напряжение зависит от токовой нагрузки  [c.56]

    Значение утечки тока находят следующим образом. Предположим, что обе катодные кривые биполярного электрода разместились так, как показано на рис. 26.3. Тогда потенциал 2 фактически должен отвечать току не / , а 2 поскольку смещение кривой 1 в положение 2 вызвано только изменением токовой нагрузки. Поэтому ток утечки должен быть равен разности /у = /1 — /2. [c.165]

    Зарядно-разрядная схема для испытания аккумуляторов аналогична схеме, описанной в работе 34. Перед зарядом аккумулятора проверяют, полностью ли снята емкость. Для этого переключатель переводят в положение Разряд и кратковременно (на несколько секунд) подают токовую нагрузку порядка 0,2 Сном. Напряжение должно составлять не выше 1,0 В. В противном случае аккумулятор разряжают до указанного напряжения. [c.223]

    Разрядные характеристики ламельного никель-кадмиевого аккумулятора представлены на рис. 36.1. Напряжение при разряде понижается достаточно плавно и тем интенсивнее, чем выше токовая нагрузка. В интервале разрядного тока 0,2—1 Сном изменение напряжения относительно невелико. Однако емкость при разряде по мере роста тока заметно падает. [c.227]

    Влияние токовой нагрузки на разрядное напряжение изучают, сняв вольт-амперную характеристику (см. работу 37) [c.241]

    Цель работы — изучить электрические характеристики ни-кель-кадмиевых ламельных и безламельных аккумуляторов, включая герметичный, в зависимости от условий разряда. Особое внимание следует уделить изучению влияния токовой нагрузки и окружающей температуры на характер зарядно-разрядных кривых, изменение емкости и удельной энергии аккумулятора. [c.229]

    Вариант I. Влияние токовой нагрузки на электрические характеристики ламельного никель-кадмиевого аккумулятора [c.230]

    Напряжение при разряде обоих аккумуляторов весьма стабильно, если не считать начальный участок, который при номинальном токе соответствует примерно 25 % емкости и постепенно исчезает по мере увеличения токовой нагрузки (рис. 37.1). [c.231]

    Каждый из вариантов работы предусматривает проведение зарядно-разрядного цикла. Для этого собирают электрическую схему (рис. 37.3), позволяющую с помощью переключателя Вз переводить аккумулятор с заряда на разряд без перемонтажа электрической цепи. При работе с малыми токами используют только высокоомный реостат 1. По мере повышения токовой нагрузки при достижении предельного значения тока (перегрев реостата недопустим ) в цепь вводят параллельно более низкоомный реостат Схема позволяет проводить разряд только от внешнего источника питания. Если работают с источником стабилизированного тока, реостаты и не нужны. [c.235]

    Пауза между окончанием заряда и началом разряда не регламентируется. Перед началом разряда замеряют напряжение разомкнутой цепи (НРЦ). Разрядная кривая напряжение — время регистрируется на ленте самопищущего вольтметра. Способ разряда зависит от токового режима. Если по условиям задания требуется ступенчатое изменение токовой нагрузки в широком диапазоне значений, удобнее пользоваться разрядом от внешнего источника питания, который надежнее стабилизирует ток. Если ток невелик и п ходе разряда не изменяется или изменяется незначительно, лучше перейти на разряд через регулируемое омическое сопротивление, что гарантирует аккумулятор от переполюсования. [c.236]

    Вольт-амперная характеристика, или кривая зависимости напряжение — ток , позволяет судить о работоспособности аккумулятора в широком интервале токовой нагрузки, а также дает возможность рассчитать внутреннее электрическое сопротивление аккумулятора на различных стадиях разряда. [c.237]

    Сущность работы сводится к разряду ступенчатым режимом предварительно заряженного аккумулятора. Зная среднее разрядное напряжение, отвечающее той или иной токовой нагрузке, строят вольт-амперную характеристику аккумулятора, причем ток откладывают по оси абсцисс. Ступенчатый режим разряда, [c.237]

    В этом варианте изучают влияние температуры или токовой нагрузки на емкость, напряжение и удельную энергию. Влияние температуры рекомендуется изучать на элементах 373 Орион или 316 Уран при разряде на постоянное сопротивление 5 и 10 Ом соответственно. Один из двух одинаковых элементов разряжается при комнатной температуре, другой — при пониженной (например, при —10 или 0°С). Выдержка в термостате при заданной температуре не превышает 30—40 мин, разряд проводят, не извлекая элемент из термостата. В аналогичных условиях испытывают батарею 3336 Планета , которую разряжают на сопротивление 5 Ом. Конечное напряжение элементов равно 0,75 В, батареи — 2,2 В. [c.241]

    С целью интенсификации электросталеплавильных п]роцес-сов в последние годы широко применяют высококачественные графи-тированные электроды, работающие при высоких удельных токовых нагрузках (30-35 Ом/сь ). Зарубежный и отечественный опыт показывает, что получить такие электроды возможно лишь на основе специального малозольного и малосернистого так называемого игольчатого кокса. Только игольчатый кокс может обеспечить такие необходимые свойства специальных электродов, как низкий коэффициент термического расширения и высокая электропроводимость. Потребности металлургии в таких сортах коксов за рубежом и в СССР непрерывно возрастают. Мировое производство игольчатого кокса в настоящее время составляет более 2 млн т/год. Наиболее крупные производители игольчатого кокса- США, Япония, Англия и Нидерланды. [c.74]

    Полученные разрядные характеристики позволяют провести обсуждение влияния токовой нагрузки как на емкость и напряжение элемента, так и на его разрядную энергию. Сравнивают также расходные коэффициенты активных масс элементов. Все эти данные включают в отчет. [c.255]

    Агрегат синтеза был размещен вне здания. При работе агрегата по регистрирующему прибору было замечено увеличение токовой нагрузки электродвигателя циркуляционного центробежного компрессора (ЦЦК), что свидетельствовало о его неисправности. После отключения этого компрессора резервный не был сразу включен. На некоторое время прекратилась циркуляция газа через колонну синтеза, что привело к снижению температуры азотоводородной смеси на выходе из нее с 220 до ПОТ. Температурные деформации привели к разуплотнению фланцевого соединения тройника на выходе газа из колонны. Вырвав-щаяся азотоводородная смесь загорелась. Импульсом для зажигания азотоводородной омеси могла быть катализаториая пыль, уносимая газом из колонны синтеза и раскаляющаяся на воздухе, или частицы окалины, способные давать искру при ударе или трении о стальную поверхность. [c.28]

    Во взрывоопасных зонах В-1, В-1а, В-И и В-Па проводники силовых, осветительных и вторичных цепей в сетях напряжением до 1000 В должны быть защищены от перегрузок, и коротких замыканий, а проводники ответвлений к электродвигателям с короткозамкнутым ротором напряжением до 1000 В во взрывоопасных зонах классов В-1, В-1а, В-П и В-Па должны быть защищены от перегрузок и их сечения (кроме кабелей марок ВБВ и АВБВ) должны допускать длительную токовую нагрузку не менее 125% номинального тока электродвигателя. [c.519]

    Выполнение работы. Включают прибор согласно инструкции. Устанавливают температуру термостата колонок 140°С, температуру термостата детектора 190°С, температуру испарителя 200 °С. Газ-носитель пропускают через колонку со скоростью 60 мл/мин, контролируя ее пенным расходомером. Подают токовую нагрузку на ДТП—130 мА. Указатель на шкале чувствительности устанавливают в положение 1 4 . После установле- [c.200]

    Потребность стран мира в коксе для производства анодов, которые используют для выплавки алюминия, в период 1985-2000 гг. будет составлять 41-43% общего производства. Значительное количество нефтяного кокса будет расходоваться на изготовление электродной продукции. В СССР для этих целей в настоящее время применяют кокс, получаемый на кубовых установках из специально подобранного и подготовленного сырья. Стабильная работа крупногабаритных электродов при повышенных токовых нагрузках обеспечивается благодаря высокой их электрической проводимости и низкому коэффициенту термического расщирения. Для получения электродной продукции с подобными свойствами требуется кокс определенной структуры - так называемый игольчатый кокс (Иеед.1е соке). Игольчатый кокс получают из высокоароматизированных малосернистых дистиллятных остатков. Его производят в США, СССР, Англии, Японии и других странах. [c.8]

    Питающая сеть от подстанции к отдельным электродвигателям или распределительным пунктам выполняется кабелями. Область применения тех или иных способов прокладки и марок кабелей определяется в соответствии с действующими Правилами устройства электроустановок (ПУЭ) в зависимости от окружающей среды. Кабели, прокладываемые во взрывоопасных зонах, кроме зон классов В-16 и В-1г, должны иметь допустимую длительную токовую нагрузку не менее 125% номинального тока электродвигателя. Кабели напряжением 6 кВ должны быть термически устойчивыми при коротких замыканиях. Во взрывоопасных помещениях классов В-1 и В-1а допускается применять провода и кабели только с медными жилами. Во всех остальных случаях, за исключением токо-подводов к передвижным электроприемникам и электроприемникам, установленным на вибрирующих основаниях, допускается применение кабелей с алюминиевыми жилами. [c.147]

    Длительность плавкп па повышенных токовых нагрузках сократилась на 20 мин. [c.220]

    Бо-видимому, характер зависимостей амплитуды виброперемещения от рассмотренных выше факторов на стендовой скважине сохраняется и для добывающей скважины. На рис.З представлены зависимости от времени t для следующих характеризующих работу УЭЦН параметров токовая нагрузка I (ломаная линия I) динамический уровень, пересчитанный на давление на приеме насоса Рур (кривая 2) расход жидкости Qж (кривая 3) и давление на приеме насоса Ры, зарегистр1фованное манометром МГЛ-5-250 (кривая 4). [c.12]

    Цель работы — изучить электрические характеристики и саморазряд ламельпого никель-железного аккумулятора. В работе предусмотрено снятие зарядной и разрядной характеристик, определение электрода, лимитирующего емкость аккумулятора, а также расчет саморазряда и изучение влияния токовой нагрузки на разрядное напряжение и емкость аккумулятора. [c.222]

    Повышение разрядного тока в известной степени увеличивает концентрацию ионов цинката в свободном электролите, т. е. в той части электролита, которая находится вне пористого цинкового электрода. Одновременно рост токовой нагрузки приводит к повышению температуры внутри аккумулятора, способствуя разрушению гидратцеллюлозной сепараторной пленки. Оба обстоятельства повышают вероятность прорастания сепаратора дендритами цинка. Отметим, что чем выше токовая нагрузка при разряде, тем большую роль играет перегрев аккумулятора. Поэтому гарантированный ресурс СЦ-аккумуляторов зависит от режима их эксплуатации и изменяется в широком диапазоне — от 100 циклов для типа СЦМ (М. — многоцикло-вый, рассчитанный на малые токи разряда) до 10 циклов для типа СЦК (К—короткорежимные). [c.233]

    Перед началом заряда следует убедиться в том, что аккумулятор разряжен. Для этого достаточно с помощью переключателя подать кратковременно (порядка нескольких секунд) токовую нагрузку около 0,5 Сном. Если напряжение на СЦ-аккуму-ляторе превышает значение 1,20 В и на СК-аккумуляторе — 0,9 В, аккумулятор доразряжают током 0,3—0,5 Сиом до указанного конечного напряжения. [c.235]

    Пористый цинковый электрод щелочного элемента работает значительно эффективнее компактного цинкового электрода солевого элемента. Коэффициент использования пористого цинка при разряде в несколько раз выше, чем монолитного цинка, а поляризация незначительна и мало зависит от токовой нагрузки. Температурный интервал работоспособности порошкового анода значительно шире, особенно за счет области пониженной температуры. Кроме того, саморазряд цинка в щелочной среде заметно ниже, чем в солевой (слабокислотной). Все это обеспечивает щелочным МЦ-элементам более высокие электрические и эксплуатационные характеристики. Так, удельная энергия их в полтора-три раза выше, чем солевых элементов. Однако солевые элементы конструктивно проще и поэтому технологичнее, производство их легче поддается интенсификации за счет максимальной автоматизации технологического процесса. Они используют более дешевое сырье. Поэтому, несмотря на несомненную перспективность щелочных элементов, оба типа сохраняют взаимную копкурентоспособность. [c.240]

    Разряд элемента при / = onst проводят от внешнего источника тока, позволяющего стабилизировать токовую нагрузку. При достижении значения Uk цепь размыкают во избежание переполюсования элемента, которое недопустимо. [c.241]

chem21.info


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта