Eng Ru
Отправить письмо

Ядерное топливо. Уран ядерное топливо


Ядерное топливо Википедия

ТВС (тепловыделяющая сборка) Топливные таблетки.

Я́дерное то́пливо — материалы, которые используются в ядерных реакторах для осуществления управляемой цепной ядерной реакции деления. Ядерное топливо принципиально отличается от других видов топлива, используемых человечеством, оно чрезвычайно энергоемко, но и весьма опасно для человека, что накладывает множество ограничений на его использование из соображений безопасности. По этой и многим другим причинам ядерное топливо гораздо сложнее в применении, чем любой вид органического топлива, и требует множества специальных технических и организационных мер при его использовании, а также высокую квалификацию персонала, имеющего с ним дело.

Общая информация

Цепная ядерная реакция представляет собой деление ядра на две части, называемые осколками деления, с одновременным выделением нескольких (2—3) нейтронов, которые, в свою очередь, могут вызвать деление следующих ядер. Такое деление происходит при попадании нейтрона в ядро атома исходного вещества. Образующиеся при делении ядра осколки деления обладают большой кинетической энергией. Торможение осколков деления в веществе сопровождается выделением большого количества тепла. Осколки деления — это ядра, образовавшиеся непосредственно в результате деления. Осколки деления и продукты их радиоактивного распада обычно называют продуктами деления. Ядра, делящиеся нейтронами любых энергий, называют ядерным горючим (как правило, это вещества с нечётным атомным числом). Существуют ядра, которые делятся только нейтронами с энергией выше некоторого порогового значения (как правило, это элементы с чётным атомным числом). Такие ядра называют сырьевым материалом, так как при захвате нейтрона пороговым ядром образуются ядра ядерного горючего. Комбинация ядерного горючего и сырьевого материала называется ядерным топливом. Ниже приведено распределение энергии деления ядра 235U между различными продуктами деления (в МэВ):

Полная энергия деления ~200 100%
Кинетическая энергия осколков деления 162 81%
Кинетическая энергия нейтронов деления 5 2,5%
Энергия γ-излучения, сопровождающего захват нейтронов 10 5%
Энергия γ-излучения продуктов деления 6 3%
Энергия β-излучения продуктов деления 5 2,5%
Энергия, уносимая нейтрино 11 5,5%

Так как энергия нейтрино уносится безвозвратно, доступно для использования только 188 МэВ/атом = 30 пДж/атом = 18 ТДж/моль = 76,6 ТДж/кг (по другим данным (см. ссылку) 205,2 - 8,6 = 196,6 МэВ/атом)[1].

Природный уран состоит из трёх изотопов: 238U (99,282 %), 235U (0,712 %) и 234U (0,006 %). Он не всегда пригоден как ядерное топливо, особенно если конструкционные материалы и замедлитель интенсивно поглощают нейтроны. В этом случае ядерное топливо изготавливают на основе обогащённого урана. В энергетических реакторах на тепловых нейтронах используют уран с обогащением менее 6 %, а в реакторах на быстрых и промежуточных нейтронах обогащение урана превышает 20 %. Обогащённый уран получают на специальных обогатительных заводах.

Классификация

Ядерное топливо делится на два вида:

  • Природное урановое, содержащее делящиеся ядра 235U, а также сырьё 238U, способное при захвате нейтрона образовывать плутоний 239Pu;
  • Вторичное топливо, которое не встречается в природе, в том числе 239Pu, получаемый из топлива первого вида, а также изотопы 233U, образующиеся при захвате нейтронов ядрами тория 232Th.

По химическому составу, ядерное топливо может быть:

Теоретические аспекты применения

На выделенном фрагменте этого муляжа ТВС с вырезанными для удобства обзора секторами ТВЭЛов видны топливные таблетки.

Ядерное топливо используется в ядерных реакторах в виде таблеток размером в несколько сантиметров, где оно обычно располагается в герметично закрытых тепловыделяющих элементах (ТВЭЛах), которые в свою очередь для удобства использования объединяются по нескольку сотен в тепловыделяющие сборки (ТВС).

К ядерному топливу применяются высокие требования по химической совместимости с оболочками ТВЭЛов, у него должна быть достаточная температура плавления и испарения, хорошая теплопроводность, небольшое увеличение объёма при нейтронном облучении, технологичность производства.

Металлический уран сравнительно редко используют как ядерное топливо. Его максимальная температура ограничена 660 °C. При этой температуре происходит фазовый переход, в котором изменяется кристаллическая структура урана. Фазовый переход сопровождается увеличением объёма урана, что может привести к разрушению оболочки ТВЭЛов. При длительном облучении в температурном интервале 200—500 °C уран подвержен радиационному росту. Это явление заключается в том, что облучённый урановый стержень удлиняется. Экспериментально наблюдалось увеличение длины уранового стержня в два — три раза[2].

Использование металлического урана, особенно при температуре больше 500 °C, затруднено из-за его распухания. После деления ядра образуются два осколка деления, суммарный объём которых больше объёма атома урана (плутония). Часть атомов — осколков деления являются атомами газов (криптона, ксенона и др.). Атомы газов накапливаются в по́рах урана и создают внутреннее давление, которое увеличивается с повышением температуры. За счёт изменения объёма атомов в процессе деления и повышения внутреннего давления газов уран и другие ядерные топлива начинают распухать. Под распуханием понимают относительное изменение объёма ядерного топлива, связанное с делением ядер.

Распухание зависит от выгорания и температуры ТВЭЛов. Количество осколков деления возрастает с увеличением выгорания, а внутреннее давление газа — с увеличением выгорания и температуры. Распухание ядерного топлива может привести к разрушению оболочки ТВЭЛа. Ядерное топливо менее подвержено распуханию, если оно обладает высокими механическими свойствами. Металлический уран как раз не относится к таким материалам. Поэтому применение металлического урана в качестве ядерного топлива ограничивает глубину выгорания, которая является одной из главных характеристик ядерного топлива.

Радиационная стойкость и механические свойства топлива улучшаются после легирования урана, в процессе которого в уран добавляют небольшое количество молибдена, алюминия и других металлов. Легирующие добавки снижают число нейтронов деления на один захват нейтрона ядерным топливом. Поэтому легирующие добавки к урану стремятся выбрать из материалов, слабо поглощающих нейтроны.

К хорошим ядерным топливам относятся некоторые тугоплавкие соединения урана: окислы, карбиды и интерметаллические соединения. Наиболее широкое применение получила керамика — диоксид урана UO2. Её температура плавления равна 2800 °C, плотность — 10,2 г/см³. У диоксида урана нет фазовых переходов, она менее подвержена распуханию, чем сплавы урана. Это позволяет повысить выгорание до нескольких процентов. Диоксид урана не взаимодействует с цирконием, ниобием, нержавеющей сталью и другими материалами при высоких температурах. Основной недостаток керамики — низкая теплопроводность — 4,5 кДж/(м·К), которая ограничивает удельную мощность реактора по температуре плавления. Так, максимальная плотность теплового потока в реакторах ВВЭР на диоксида урана не превышает 1,4·103 кВт/м², при этом максимальная температура в стержневых ТВЭЛах достигает 2200 °C. Кроме того, горячая керамика очень хрупка и может растрескиваться.

Плутоний относится к низкоплавким металлам. Его температура плавления равна 640 °C. У плутония плохие пластические свойства, поэтому он почти не поддаётся механической обработке. Технология изготовления ТВЭЛов усложняется токсичностью плутония. Для приготовления ядерного топлива обычно применяются диоксид плутония, смесь карбидов плутония с карбидами урана, сплавы плутония с металлами.

Высокими теплопроводностью и механическими свойствами обладают дисперсионные топлива, в которых мелкие частицы UO2, UC, PuO2 и других соединений урана и плутония размещают гетерогенно в металлической матрице из алюминия, молибдена, нержавеющей стали и др. Материал матрицы и определяет радиационную стойкость и теплопроводность дисперсионного топлива. Например, дисперсионное топливо Первой АЭС состояло из частиц сплава урана с 9 % молибдена, залитых магнием.

Практическое применение

На АЭС и другие ядерные установки топливо приходит в виде довольно сложных технических устройств — тепловыделяющих сборок (ТВС), которые в зависимости от типа реактора загружаются непосредственно во время его работы (как на реакторах типа РБМК в России) на место выгоревших ТВС или заменяют отработавшие сборки большими группами во время ремонтной кампании (как на российских реакторах ВВЭР или их аналогах в других странах, PWR и других). В последнем случае при каждой новой загрузке меняется чаще всего треть топлива и полностью изменяется его расстановка в активной зоне реактора, наиболее выгоревшие сборки с топливом, из центра активной зоны, выгружаются, на их место ставится вторая треть сборок, со средним выгоранием и расположением. На их место в свою очередь ставятся наименее выгоревшие ТВС, с периферии активной зоны; в то время как на периферию загружается свежее топливо. Такая схема перестановки топлива является традиционной и обусловлена многими причинами, например стремлением обеспечить равномерное энерговыделение в топливе и максимальный запас до кризиса теплообмена воды на оболочках ТВЭЛ.

Описание загрузки ядерного топлива в активную зону реактора, данное выше, всё же является весьма условным, позволяющим иметь общее представление об этом процессе. На самом деле загрузка топлива осуществляется сборками с различными степенями обогащения топлива и её предваряют сложнейшие ядерно-физические расчёты конфигурации активной зоны реактора в специализированном программном обеспечении[3], которые совершаются на годы вперёд и позволяют планировать топливные и ремонтные кампании для увеличения показателей эффективности работы АЭС, например КИУМа. Кроме того, если конфигурация топлива не будет удовлетворять определённым требованиям, важнейшими из которых являются различные коэффициенты неравномерности энерговыделения в активной зоне, реактор не сможет работать вовсе или будет неуправляемым. Кроме различной степени обогащения разных ТВС применяются другие решения для обеспечения нужной конфигурации активной зоны и стабильности её характеристик в течение топливной кампании, например ТВС, в которых вместо некоторых ТВЭЛов содержатся поглощающие элементы (ПЭЛы), которые компенсируют изначальную избыточную реактивность свежего топлива, выгорают в процессе работы реактора и по мере использования топлива всё меньше влияют на его реактивность, что в итоге выравнивает по времени величину энерговыделения на протяжении всего срока работы тепловыделяющей сборки. В настоящий момент в топливе промышленных водо-водяных реакторов во всём мире практически перестали использовать ПЭЛы с борным поглотителем, долгое время являвшимися почти безальтернативными элементами, и перешли на более прогрессивный способ[4] — внесение с теми же целями гадолиниевого выгорающего поглотителя непосредственно в топливную матрицу; этот способ имеет много важных преимуществ.

После выгрузки из активной зоны реактора отработавшего топлива его помещают в специальный бассейн выдержки, обычно располагающийся в непосредственной близости от реактора. Дело в том, что в отработавших ТВС содержится большое количество осколков деления урана, сразу после выгрузки каждый ТВЭЛ в среднем содержит 300000 Кюри радиоактивных веществ, которые выделяют энергию 100 кВт*час. За счёт этой энергии использованное ядерное топливо имеет свойство саморазогреваться до больших температур без принятия специальных мер (недавно выгруженное топливо может разогреться на воздухе примерно до 300 °C) и является высокорадиоактивным, поэтому его хранят 3-4 года в бассейнах с определённым температурным режимом под слоем воды, защищающим персонал от ионизирующего излучения продуктов распада урана. По мере выдержки уменьшается радиоактивность топлива и мощность его остаточных энерговыделений, обычно через 3 года, когда саморазогрев ТВС сокращается до 50-60 °C, его извлекают и отправляют для хранения, захоронения или переработки[5][6][7][8].

Получение

Урановое топливо

Урановое ядерное топливо получают переработкой руд. Процесс происходит в несколько этапов:

  • Для бедных месторождений: В современной промышленности в силу отсутствия богатых урановых руд (исключения составляют канадские и австралийские месторождения типа несогласия[9], в которых концентрация урана доходит до 3 %) используется способ подземного выщелачивания руд. Это исключает дорогостоящую добычу руды. Предварительная подготовка идёт непосредственно под землёй. Через закачные скважины под землю над месторождением закачивается серная кислота, иногда с добавлением солей трёхвалентного железа (для окисления урана U (IV) до U (VI)), хотя руды часто содержат железо и пиролюзит, которые облегчают окисление. Через откачные скважины специальными насосами раствор серной кислоты с ураном поднимается на поверхность. Далее он непосредственно поступает на сорбционное, гидрометаллургическое извлечение и одновременное обогащение урана.
  • Для рудных месторождений: используют обогащение руды и радиометрическое обогащение руды.
  • Гидрометаллургическая переработка — дробление, выщелачивание, сорбционное или экстракционное извлечение урана с получением очищенной закиси-окиси урана (U3O8), диураната натрия (Na2U2O7) или диураната аммония ((Nh5)2U2O7).
  • Перевод урана из оксида в тетрафторид UF4, или из оксидов непосредственно для получения гексафторида UF6, который используется для обогащения урана по изотопу 235.
  • Обогащение методами газовой термодиффузии или центрифугированием.
  • UF6, обогащенный по 235 изотопу переводят в диоксид UO2, из которой изготавливают «таблетки» ТВЭЛов или получают другие соединения урана с этой же целью.

Ториевое топливо

Информация в этой статье или некоторых её разделах устарела.

Вы можете помочь проекту, обновив её и убрав после этого данный шаблон.

Торий в настоящее время в качестве сырья для производства ядерного топлива не применяется в силу следующих причин:

  1. Запасы урана достаточно велики;
  2. Образование 232U, который, в свою очередь, образует γ-активные ядра 212Bi, 208Tl, затрудняющие производство ТВЭЛов;
  3. Переработка облучённых ториевых ТВЭЛов сложнее и дороже переработки урановых.

Плутониевое топливо

Плутониевое ядерное топливо в настоящее время также не применяется, что связано с его крайне сложной химией. За многолетнюю историю атомной промышленности неоднократно предпринимались попытки использования плутония как в виде чистых соединений, так и в смеси с соединениями урана, однако успехом они не увенчались. Топливо для АЭС, содержащее плутоний, называется MOX-топливо. Применение его в реакторах ВВЭР нецелесообразно из-за уменьшения примерно в 2 раза периода разгона[11], на что не рассчитаны штатные системы управления реактором.

Регенерация

При работе ядерного реактора топливо выгорает не полностью, имеет место процесс воспроизводства отдельных изотопов (Pu). В связи с этим отработанные ТВЭЛы направляют на переработку для регенерации топлива и повторного его использования.

В настоящее время для этих целей наиболее широко применяется пьюрекс-процесс, суть которого состоит в следующем: ТВЭЛы разрезают на части и растворяют в азотной кислоте, далее раствор очищают от продуктов деления и элементов оболочки, выделяют чистые соединения U и Pu. Затем полученный диоксид плутония PuO2 направляют на изготовление новых сердечников, а уран либо на изготовление сердечников, либо на обогащение 235U.

Переработка и регенерация высокорадиоактивных веществ — сложный и дорогостоящий процесс. ТВЭЛы после извлечения из реакторов проходят выдержку в течение нескольких лет (обычно 3—6) в специальных хранилищах. Трудности вызывает также переработка и захоронение отходов, непригодных к регенерации. Стоимость всех этих мер оказывает существенное влияние на экономическую эффективность атомных электростанций.

Примечания

  1. ↑ Изотопы: свойства, получение, применение. В 2 т. Т. 2/ Под ред. В. Ю. Баранова. - М.: Физматлит, 2005, с. 115.
  2. ↑ Харьковский физико-технический институт, Наукова думка, Киев, 1978, стр. 45.
  3. ↑ например в России БИПР-7А (разработки Курчатовского института) для ВВЭР и DINA-РБМК для РБМК (разработки НИКИЭТ имени Н. А. Доллежаля) или программа WIMS-D/4, использующаяся для расчёта некоторых европейских реакторов
  4. ↑ промышленная эксплуатация такого топлива в России насчитывает примерно 10 лет
  5. ↑ Бартоломей Г.Г., Байбаков В.Д., Алхутов М.С., Бать Г.А. Основы теории и методы расчёта ядерных энергетических реакторов. — М.: Энергоатомиздат, 1982.
  6. ↑ Т.Х.Маргулова. Атомные электрические станции. — М.: ИздАТ, 1994.
  7. ↑ Б.А.Дементьев. Кинетика и регулирование ядерных реакторов. — М.: Энергоатомиздат, 1986.
  8. ↑ Пособие по физике реактора ВВЭР-1000.—БАЭС, ЦПП, 2003
  9. ↑ Формирование урановых месторождений «типа несогласия» с богатыми рудами связывается, прежде всего, с древними (протерозойскими) рудообразующими процессами, проявленными в зонах структурно-стратиграфических несогласий (ССН). Соответственно, перспективными для обнаружения месторождений данного типа являются районы широкого развития докембрийских формаций — щиты, срединные массивы и выступы кристаллического фундамента. К таким тектоническим структурам в России относятся Балтийский щит, Воронежский кристаллический массив, Восточно-Саянский, Патомский и Алданский районы южного обрамления Сибирской платформы, Анабарский щит и Омолонский массив, примыкающая к Северному Ледовитому океану часть полуострова Таймыр и северо-восточное окончание Чукотки.
  10. ↑ англ. Yellowcake
  11. ↑ Период разгона реактора — время, за которое мощность ядерного реактора изменяется в e раз.

Литература

  • БСЭ
  • Петунин В. П. Теплоэнергетика ядерных установок М.: Атомиздат, 1960.
  • Левин В. Е. Ядерная физика и ядерные реакторы 4-е изд. — М.: Атомиздат, 1979.

wikiredia.ru

Ядерное топливо Википедия

ТВС (тепловыделяющая сборка) Топливные таблетки.

Я́дерное то́пливо — материалы, которые используются в ядерных реакторах для осуществления управляемой цепной ядерной реакции деления. Ядерное топливо принципиально отличается от других видов топлива, используемых человечеством, оно чрезвычайно энергоемко, но и весьма опасно для человека, что накладывает множество ограничений на его использование из соображений безопасности. По этой и многим другим причинам ядерное топливо гораздо сложнее в применении, чем любой вид органического топлива, и требует множества специальных технических и организационных мер при его использовании, а также высокую квалификацию персонала, имеющего с ним дело.

Общая информация[ | код]

Цепная ядерная реакция представляет собой деление ядра на две части, называемые осколками деления, с одновременным выделением нескольких (2—3) нейтронов, которые, в свою очередь, могут вызвать деление следующих ядер. Такое деление происходит при попадании нейтрона в ядро атома исходного вещества. Образующиеся при делении ядра осколки деления обладают большой кинетической энергией. Торможение осколков деления в веществе сопровождается выделением большого количества тепла. Осколки деления — это ядра, образовавшиеся непосредственно в результате деления. Осколки деления и продукты их радиоактивного распада обычно называют продуктами деления. Ядра, делящиеся нейтронами любых энергий, называют ядерным горючим (как правило, это вещества с нечётным атомным числом). Существуют ядра, которые делятся только нейтронами с энергией выше некоторого порогового значения (как правило, это элементы с чётным атомным числом). Такие ядра называют сырьевым материалом, так как при захвате нейтрона пороговым ядром образуются ядра ядерного горючего. Комбинация ядерного горючего и сырьевого материала называется ядерным топливом. Ниже приведено распределение энергии деления ядра 235U между различными продуктами деления (в МэВ):

Полная энергия деления ~200 100%
Кинетическая энергия осколков деления 162 81%
Кинетическая энергия нейтронов деления 5 2,5%
Энергия γ-излучения, сопровождающего захват нейтронов 10 5%
Энергия γ-излучения продуктов деления 6 3%
Энергия β-излучения продуктов деления 5 2,5%
Энергия, уносимая нейтрино 11 5,5%

Так как энергия нейтрино уносится безвозвратно, доступно для использования только 188 МэВ/атом = 30 пДж/атом = 18 ТДж/моль = 76,6 ТДж/кг (по другим данным (см. ссылку) 205,2 - 8,6 = 196,6 МэВ/атом)[1].

Природный уран состоит из трёх изотопов: 238U (99,282 %), 235U (0,712 %) и 234U (0,006 %). Он не всегда пригоден как ядерное топливо, особенно если конструкционные материалы и замедлитель интенсивно поглощают нейтроны. В этом случае ядерное топливо изготавливают на основе обогащённого урана. В энергетических реакторах на тепловых нейтронах используют уран с обогащением менее 6 %, а в реакторах на быстрых и промежуточных нейтронах обогащение урана превышает 20 %. Обогащённый уран получают на специальных обогатительных заводах.

Классификация[ | код]

Ядерное топливо делится на два вида:

  • Природное урановое, содержащее делящиеся ядра 235U, а также сырьё 238U, способное при захвате нейтрона образовывать плутоний 239Pu;
  • Вторичное топливо, которое не встречается в природе, в том числе 239Pu, получаемый из топлива первого вида, а также изотопы 233U, образующиеся при захвате нейтронов ядрами тория 232Th.

По химическому составу, ядерное топливо может быть:

Теоретиче

ru-wiki.ru

Ядерное топливо — Википедия

ТВС (тепловыделяющая сборка) Топливные таблетки.

Я́дерное то́пливо — материалы, которые используются в ядерных реакторах для осуществления управляемой цепной ядерной реакции деления. Ядерное топливо принципиально отличается от других видов топлива, используемых человечеством, оно чрезвычайно энергоемко, но и весьма опасно для человека, что накладывает множество ограничений на его использование из соображений безопасности. По этой и многим другим причинам ядерное топливо гораздо сложнее в применении, чем любой вид органического топлива, и требует множества специальных технических и организационных мер при его использовании, а также высокую квалификацию персонала, имеющего с ним дело.

Общая информация[править]

Цепная ядерная реакция представляет собой деление ядра на две части, называемые осколками деления, с одновременным выделением нескольких (2—3) нейтронов, которые, в свою очередь, могут вызвать деление следующих ядер. Такое деление происходит при попадании нейтрона в ядро атома исходного вещества. Образующиеся при делении ядра осколки деления обладают большой кинетической энергией. Торможение осколков деления в веществе сопровождается выделением большого количества тепла. Осколки деления — это ядра, образовавшиеся непосредственно в результате деления. Осколки деления и продукты их радиоактивного распада обычно называют продуктами деления. Ядра, делящиеся нейтронами любых энергий, называют ядерным горючим (как правило, это вещества с нечётным атомным числом). Существуют ядра, которые делятся только нейтронами с энергией выше некоторого порогового значения (как правило, это элементы с чётным атомным числом). Такие ядра называют сырьевым материалом, так как при захвате нейтрона пороговым ядром образуются ядра ядерного горючего. Комбинация ядерного горючего и сырьевого материала называется ядерным топливом. Ниже приведено распределение энергии деления ядра 235U между различными продуктами деления (в МэВ):

Полная энергия деления ~200
Кинетическая энергия осколков деления 162
Кинетическая энергия нейтронов деления 5
Энергия γ-излучения, сопровождающего захват нейтронов 10
Энергия γ-излучения продуктов деления 6
Энергия β-излучения продуктов деления 5
Энергия, уносимая нейтрино 11

Так как энергия нейтрино уносится безвозвратно, доступно для использования только 188 МэВ/атом = 30 пДж/атом = 18 ТДж/моль = 76,6 ТДж/кг (по другим данным (см. ссылку) 205,2 - 8,6 = 196,6 МэВ/атом)[1].

Природный уран состоит из трёх изотопов: 238U (99,282 %), 235U (0,712 %) и 234U (0,006 %). Он не всегда пригоден как ядерное топливо, особенно если конструкционные материалы и замедлитель интенсивно поглощают нейтроны. В этом случае ядерное топливо изготавливают на основе обогащённого урана. В энергетических реакторах на тепловых нейтронах используют уран с обогащением менее 6 %, а в реакторах на быстрых и промежуточных нейтронах обогащение урана превышает 20 %. Обогащённый уран получают на специальных обогатительных заводах.

Ядерное топливо делится на два вида:

  • Природное урановое, содержащее делящиеся ядра 235U, а также сырьё 238U, способное при захвате нейтрона образовывать плутоний 239Pu;
  • Вторичное топливо, которое не встречается в природе, в том числе 239Pu, получаемый из топлива первого вида, а также изотопы 233U, образующиеся при захвате нейтронов ядрами тория 232Th.

По химическому составу, ядерное топливо может быть:

Теоретические аспекты применения[править]

На выделенном фрагменте этого муляжа ТВС с вырезанными для удобства обзора секторами ТВЭЛов видны топливные таблетки.

Ядерное топливо используется в ядерных реакторах в виде таблеток размером в несколько сантиметров, где оно обычно располагается в герметично закрытых тепловыделяющих элементах (ТВЭЛах), которые в свою очередь для удобства использования объединяются по нескольку сотен в тепловыделяющие сборки (ТВС).

К ядерному топливу применяются высокие требования по химической совместимости с оболочками ТВЭЛов, у него должна быть достаточная температура плавления и испарения, хорошая теплопроводность, небольшое увеличение объёма при нейтронном облучении, технологичность производства.

Металлический уран сравнительно редко используют как ядерное топливо. Его максимальная температура ограничена 660 °C. При этой температуре происходит фазовый переход, в котором изменяется кристаллическая структура урана. Фазовый переход сопровождается увеличением объёма урана, что может привести к разрушению оболочки ТВЭЛов. При длительном облучении в температурном интервале 200—500 °C уран подвержен радиационному росту. Это явление заключается в том, что облучённый урановый стержень удлиняется. Экспериментально наблюдалось увеличение длины уранового стержня в два — три раза[2].

Использование металлического урана, особенно при температуре больше 500 °C, затруднено из-за его распухания. После деления ядра образуются два осколка деления, суммарный объём которых больше объёма атома урана (плутония). Часть атомов — осколков деления являются атомами газов (криптона, ксенона и др.). Атомы газов накапливаются в по́рах урана и создают внутреннее давление, которое увеличивается с повышением температуры. За счёт изменения объёма атомов в процессе деления и повышения внутреннего давления газов уран и другие ядерные топлива начинают распухать. Под распуханием понимают относительное изменение объёма ядерного топлива, связанное с делением ядер.

Распухание зависит от выгорания и температуры ТВЭЛов. Количество осколков деления возрастает с увеличением выгорания, а внутреннее давление газа — с увеличением выгорания и температуры. Распухание ядерного топлива может привести к разрушению оболочки ТВЭЛа. Ядерное топливо менее подвержено распуханию, если оно обладает высокими механическими свойствами. Металлический уран как раз не относится к таким материалам. Поэтому применение металлического урана в качестве ядерного топлива ограничивает глубину выгорания, которая является одной из главных характеристик ядерного топлива.

Радиационная стойкость и механические свойства топлива улучшаются после легирования урана, в процессе которого в уран добавляют небольшое количество молибдена, алюминия и других металлов. Легирующие добавки снижают число нейтронов деления на один захват нейтрона ядерным топливом. Поэтому легирующие добавки к урану стремятся выбрать из материалов, слабо поглощающих нейтроны.

К хорошим ядерным топливам относятся некоторые тугоплавкие соединения урана: окислы, карбиды и интерметаллические соединения. Наиболее широкое применение получила керамика — диоксид урана UO2. Её температура плавления равна 2800 °C, плотность — 10,2 г/см³. У диоксида урана нет фазовых переходов, она менее подвержена распуханию, чем сплавы урана. Это позволяет повысить выгорание до нескольких процентов. Диоксид урана не взаимодействует с цирконием, ниобием, нержавеющей сталью и другими материалами при высоких температурах. Основной недостаток керамики — низкая теплопроводность — 4,5 кДж/(м·К), которая ограничивает удельную мощность реактора по температуре плавления. Так, максимальная плотность теплового потока в реакторах ВВЭР на диоксида урана не превышает 1,4·103 кВт/м², при этом максимальная температура в стержневых ТВЭЛах достигает 2200 °C. Кроме того, горячая керамика очень хрупка и может растрескиваться.

Плутоний относится к низкоплавким металлам. Его температура плавления равна 640 °C. У плутония плохие пластические свойства, поэтому он почти не поддаётся механической обработке. Технология изготовления ТВЭЛов усложняется токсичностью плутония. Для приготовления ядерного топлива обычно применяются диоксид плутония, смесь карбидов плутония с карбидами урана, сплавы плутония с металлами.

Высокими теплопроводностью и механическими свойствами обладают дисперсионные топлива, в которых мелкие частицы UO2, UC, PuO2 и других соединений урана и плутония размещают гетерогенно в металлической матрице из алюминия, молибдена, нержавеющей стали и др. Материал матрицы и определяет радиационную стойкость и теплопроводность дисперсионного топлива. Например, дисперсионное топливо Первой АЭС состояло из частиц сплава урана с 9 % молибдена, залитых магнием.

Практическое применение[править]

На АЭС и другие ядерные установки топливо приходит в виде довольно сложных технических устройств — тепловыделяющих сборок (ТВС), которые в зависимости от типа реактора загружаются непосредственно во время его работы (как на реакторах типа РБМК в России) на место выгоревших ТВС или заменяют отработавшие сборки большими группами во время ремонтной кампании (как на российских реакторах ВВЭР или их аналогах в других странах, PWR и других). В последнем случае при каждой новой загрузке меняется чаще всего треть топлива и полностью изменяется его расстановка в активной зоне реактора, наиболее выгоревшие сборки с топливом, из центра активной зоны, выгружаются, на их место ставится вторая треть сборок, со средним выгоранием и расположением. На их место в свою очередь ставятся наименее выгоревшие ТВС, с периферии активной зоны; в то время как на периферию загружается свежее топливо. Такая схема перестановки топлива является традиционной и обусловлена многими причинами, например стремлением обеспечить равномерное энерговыделение в топливе и максимальный запас до кризиса теплообмена воды на оболочках ТВЭЛ.

Описание загрузки ядерного топлива в активную зону реактора, данное выше, всё же является весьма условным, позволяющим иметь общее представление об этом процессе. На самом деле загрузка топлива осуществляется сборками с различными степенями обогащения топлива и её предваряют сложнейшие ядерно-физические расчёты конфигурации активной зоны реактора в специализированном программном обеспечении[3], которые совершаются на годы вперёд и позволяют планировать топливные и ремонтные кампании для увеличения показателей эффективности работы АЭС, например КИУМа. Кроме того, если конфигурация топлива не будет удовлетворять определённым требованиям, важнейшими из которых являются различные коэффициенты неравномерности энерговыделения в активной зоне, реактор не сможет работать вовсе или будет неуправляемым. Кроме различной степени обогащения разных ТВС применяются другие решения для обеспечения нужной конфигурации активной зоны и стабильности её характеристик в течение топливной кампании, например ТВС, в которых вместо некоторых ТВЭЛов содержатся поглощающие элементы (ПЭЛы), которые компенсируют изначальную избыточную реактивность свежего топлива, выгорают в процессе работы реактора и по мере использования топлива всё меньше влияют на его реактивность, что в итоге выравнивает по времени величину энерговыделения на протяжении всего срока работы тепловыделяющей сборки. В настоящий момент в топливе промышленных водо-водяных реакторов во всём мире практически перестали использовать ПЭЛы с борным поглотителем, долгое время являвшимися почти безальтернативными элементами, и перешли на более прогрессивный способ[4] — внесение с теми же целями гадолиниевого выгорающего поглотителя непосредственно в топливную матрицу; этот способ имеет много важных преимуществ.

После выгрузки из активной зоны реактора отработавшего топлива его помещают в специальный бассейн выдержки, обычно располагающийся в непосредственной близости от реактора. Дело в том, что в отработавших ТВС содержится большое количество осколков деления урана, сразу после выгрузки каждый ТВЭЛ в среднем содержит 300000 Кюри радиоактивных веществ, которые выделяют энергию 100 кВт*час. За счёт этой энергии использованное ядерное топливо имеет свойство саморазогреваться до больших температур без принятия специальных мер (недавно выгруженное топливо может разогреться на воздухе примерно до 300 °C) и является высокорадиоактивным, поэтому его хранят 3-4 года в бассейнах с определённым температурным режимом под слоем воды, защищающим персонал от ионизирующего излучения продуктов распада урана. По мере выдержки уменьшается радиоактивность топлива и мощность его остаточных энерговыделений, обычно через 3 года, когда саморазогрев ТВС сокращается до 50-60 °C, его извлекают и отправляют для хранения, захоронения или переработки[5][6][7][8].

Урановое топливо[править]

Урановое ядерное топливо получают переработкой руд. Процесс происходит в несколько этапов:

  • Для бедных месторождений: В современной промышленности в силу отсутствия богатых урановых руд (исключения составляют канадские и австралийские месторождения типа несогласия[9], в которых концентрация урана доходит до 3 %) используется способ подземного выщелачивания руд. Это исключает дорогостоящую добычу руды. Предварительная подготовка идёт непосредственно под землёй. Через закачные скважины под землю над месторождением закачивается серная кислота, иногда с добавлением солей трёхвалентного железа (для окисления урана U (IV) до U (VI)), хотя руды часто содержат железо и пиролюзит, которые облегчают окисление. Через откачные скважины специальными насосами раствор серной кислоты с ураном поднимается на поверхность. Далее он непосредственно поступает на сорбционное, гидрометаллургическое извлечение и одновременное обогащение урана.
  • Для рудных месторождений: используют обогащение руды и радиометрическое обогащение руды.
  • Гидрометаллургическая переработка — дробление, выщелачивание, сорбционное или экстракционное извлечение урана с получением очищенной закиси-окиси урана (U3O8), диураната натрия (Na2U2O7) или диураната аммония ((Nh5)2U2O7).
  • Перевод урана из оксида в тетрафторид UF4, или из оксидов непосредственно для получения гексафторида UF6, который используется для обогащения урана по изотопу 235.
  • Обогащение методами газовой термодиффузии или центрифугированием.
  • UF6, обогащенный по 235 изотопу переводят в диоксид UO2, из которой изготавливают «таблетки» ТВЭЛов или получают другие соединения урана с этой же целью.

Ториевое топливо[править]

Ambox outdated serious.svg Информация в этой статье или некоторых её разделах устарела.Вы можете помочь проекту, обновив её и убрав после этого данный шаблон.
Торий в настоящее время в качестве сырья для производства ядерного топлива не применяется в силу следующих причин:
  1. Запасы урана достаточно велики;
  2. Образование 232U, который, в свою очередь, образует γ-активные ядра 212Bi, 208Tl, затрудняющие производство ТВЭЛов;
  3. Переработка облучённых ториевых ТВЭЛов сложнее и дороже переработки урановых.

Плутониевое топливо[править]

Плутониевое ядерное топливо в настоящее время также не применяется, что связано с его крайне сложной химией. За многолетнюю историю атомной промышленности неоднократно предпринимались попытки использования плутония как в виде чистых соединений, так и в смеси с соединениями урана, однако успехом они не увенчались. Топливо для АЭС, содержащее плутоний, называется MOX-топливо. Применение его в реакторах ВВЭР нецелесообразно из-за уменьшения примерно в 2 раза периода разгона[11], на что не рассчитаны штатные системы управления реактором.

При работе ядерного реактора, топливо выгорает не полностью, имеет место процесс воспроизводства отдельных изотопов (Pu). В связи с этим, отработанные ТВЭЛы направляют на переработку для регенерации топлива и повторного его использования.

В настоящее время для этих целей наиболее широко применяется пьюрекс-процесс, суть которого состоит в следующем: ТВЭЛы разрезают на части и растворяют в азотной кислоте, далее раствор очищают от продуктов деления и элементов оболочки, выделяют чистые соединения U и Pu. Затем, полученный диоксид плутония PuO2 направляют на изготовление новых сердечников, а уран либо на изготовление сердечников, либо на обогащение 235U.

Переработка и регенерация высокорадиоактивных веществ — сложный и дорогостоящий процесс. ТВЭЛы после извлечения из реакторов проходят выдержку в течение нескольких лет (обычно 3—6) в специальных хранилищах. Трудности вызывает также переработка и захоронение отходов, непригодных к регенерации. Стоимость всех этих мер оказывает существенное влияние на экономическую эффективность атомных электростанций.

  1. ↑ Изотопы: свойства, получение, применение. В 2 т. Т. 2/ Под ред. В. Ю. Баранова. - М.: Физматлит, 2005, с. 115.
  2. ↑ Харьковский физико-технический институт, Наукова думка, Киев, 1978, стр. 45.
  3. ↑ например в России БИПР-7А (разработки Курчатовского института) для ВВЭР и DINA-РБМК для РБМК (разработки НИКИЭТ имени Н. А. Доллежаля) или программа WIMS-D/4, использующаяся для расчёта некоторых европейских реакторов
  4. ↑ промышленная эксплуатация такого топлива в России насчитывает примерно 10 лет
  5. ↑ Бартоломей Г.Г., Байбаков В.Д., Алхутов М.С., Бать Г.А. Основы теории и методы расчёта ядерных энергетических реакторов. — М.: Энергоатомиздат, 1982.
  6. ↑ Т.Х.Маргулова. Атомные электрические станции. — М.: ИздАТ, 1994.
  7. ↑ Б.А.Дементьев. Кинетика и регулирование ядерных реакторов. — М.: Энергоатомиздат, 1986.
  8. ↑ Пособие по физике реактора ВВЭР-1000.—БАЭС, ЦПП, 2003
  9. ↑ Формирование урановых месторождений «типа несогласия» с богатыми рудами связывается, преж­де всего, с древними (протерозойскими) рудообразующими процессами, проявленными в зонах струк­турно-стратиграфических несогласий (ССН). Соот­ветственно, перспективными для обнаружения мес­торождений данного типа являются районы широко­го развития докембрийских формаций — щиты, сре­динные массивы и выступы кристаллического фун­дамента. К таким тектоническим структурам в Рос­сии относятся Балтийский щит, Воронежский кри­сталлический массив, Восточно-Саянский, Патомский и Алданский районы южного обрамления Си­бирской платформы, Анабарский щит и Омолонский массив, примыкающая к Северному Ледовитому оке­ану часть полуострова Таймыр и северо-восточное окончание Чукотки.
  10. ↑ англ. Yellowcake
  11. ↑ Период разгона реактора — время, за которое мощность ядерного реактора изменяется в e раз.
  • БСЭ
  • Петунин В. П. Теплоэнергетика ядерных установок М.: Атомиздат, 1960.
  • Левин В. Е. Ядерная физика и ядерные реакторы 4-е изд. — М.: Атомиздат, 1979.

wp.wiki-wiki.ru

Ядерное топливо — википедия орг

ТВС (тепловыделяющая сборка) Топливные таблетки.

Я́дерное то́пливо — материалы, которые используются в ядерных реакторах для осуществления управляемой цепной ядерной реакции деления. Ядерное топливо принципиально отличается от других видов топлива, используемых человечеством, оно чрезвычайно энергоемко, но и весьма опасно для человека, что накладывает множество ограничений на его использование из соображений безопасности. По этой и многим другим причинам ядерное топливо гораздо сложнее в применении, чем любой вид органического топлива, и требует множества специальных технических и организационных мер при его использовании, а также высокую квалификацию персонала, имеющего с ним дело.

Общая информация

Цепная ядерная реакция представляет собой деление ядра на две части, называемые осколками деления, с одновременным выделением нескольких (2—3) нейтронов, которые, в свою очередь, могут вызвать деление следующих ядер. Такое деление происходит при попадании нейтрона в ядро атома исходного вещества. Образующиеся при делении ядра осколки деления обладают большой кинетической энергией. Торможение осколков деления в веществе сопровождается выделением большого количества тепла. Осколки деления — это ядра, образовавшиеся непосредственно в результате деления. Осколки деления и продукты их радиоактивного распада обычно называют продуктами деления. Ядра, делящиеся нейтронами любых энергий, называют ядерным горючим (как правило, это вещества с нечётным атомным числом). Существуют ядра, которые делятся только нейтронами с энергией выше некоторого порогового значения (как правило, это элементы с чётным атомным числом). Такие ядра называют сырьевым материалом, так как при захвате нейтрона пороговым ядром образуются ядра ядерного горючего. Комбинация ядерного горючего и сырьевого материала называется ядерным топливом. Ниже приведено распределение энергии деления ядра 235U между различными продуктами деления (в МэВ):

Полная энергия деления ~200 100%
Кинетическая энергия осколков деления 162 81%
Кинетическая энергия нейтронов деления 5 2,5%
Энергия γ-излучения, сопровождающего захват нейтронов 10 5%
Энергия γ-излучения продуктов деления 6 3%
Энергия β-излучения продуктов деления 5 2,5%
Энергия, уносимая нейтрино 11 5,5%

Так как энергия нейтрино уносится безвозвратно, доступно для использования только 188 МэВ/атом = 30 пДж/атом = 18 ТДж/моль = 76,6 ТДж/кг (по другим данным (см. ссылку) 205,2 - 8,6 = 196,6 МэВ/атом)[1].

Природный уран состоит из трёх изотопов: 238U (99,282 %), 235U (0,712 %) и 234U (0,006 %). Он не всегда пригоден как ядерное топливо, особенно если конструкционные материалы и замедлитель интенсивно поглощают нейтроны. В этом случае ядерное топливо изготавливают на основе обогащённого урана. В энергетических реакторах на тепловых нейтронах используют уран с обогащением менее 6 %, а в реакторах на быстрых и промежуточных нейтронах обогащение урана превышает 20 %. Обогащённый уран получают на специальных обогатительных заводах.

Классификация

Ядерное топливо делится на два вида:

  • Природное урановое, содержащее делящиеся ядра 235U, а также сырьё 238U, способное при захвате нейтрона образовывать плутоний 239Pu;
  • Вторичное топливо, которое не встречается в природе, в том числе 239Pu, получаемый из топлива первого вида, а также изотопы 233U, образующиеся при захвате нейтронов ядрами тория 232Th.

По химическому составу, ядерное топливо может быть:

Теоретические аспекты применения

  На выделенном фрагменте этого муляжа ТВС с вырезанными для удобства обзора секторами ТВЭЛов видны топливные таблетки.

Ядерное топливо используется в ядерных реакторах в виде таблеток размером в несколько сантиметров, где оно обычно располагается в герметично закрытых тепловыделяющих элементах (ТВЭЛах), которые в свою очередь для удобства использования объединяются по нескольку сотен в тепловыделяющие сборки (ТВС).

К ядерному топливу применяются высокие требования по химической совместимости с оболочками ТВЭЛов, у него должна быть достаточная температура плавления и испарения, хорошая теплопроводность, небольшое увеличение объёма при нейтронном облучении, технологичность производства.

Металлический уран сравнительно редко используют как ядерное топливо. Его максимальная температура ограничена 660 °C. При этой температуре происходит фазовый переход, в котором изменяется кристаллическая структура урана. Фазовый переход сопровождается увеличением объёма урана, что может привести к разрушению оболочки ТВЭЛов. При длительном облучении в температурном интервале 200—500 °C уран подвержен радиационному росту. Это явление заключается в том, что облучённый урановый стержень удлиняется. Экспериментально наблюдалось увеличение длины уранового стержня в два — три раза[2].

Использование металлического урана, особенно при температуре больше 500 °C, затруднено из-за его распухания. После деления ядра образуются два осколка деления, суммарный объём которых больше объёма атома урана (плутония). Часть атомов — осколков деления являются атомами газов (криптона, ксенона и др.). Атомы газов накапливаются в по́рах урана и создают внутреннее давление, которое увеличивается с повышением температуры. За счёт изменения объёма атомов в процессе деления и повышения внутреннего давления газов уран и другие ядерные топлива начинают распухать. Под распуханием понимают относительное изменение объёма ядерного топлива, связанное с делением ядер.

Распухание зависит от выгорания и температуры ТВЭЛов. Количество осколков деления возрастает с увеличением выгорания, а внутреннее давление газа — с увеличением выгорания и температуры. Распухание ядерного топлива может привести к разрушению оболочки ТВЭЛа. Ядерное топливо менее подвержено распуханию, если оно обладает высокими механическими свойствами. Металлический уран как раз не относится к таким материалам. Поэтому применение металлического урана в качестве ядерного топлива ограничивает глубину выгорания, которая является одной из главных характеристик ядерного топлива.

Радиационная стойкость и механические свойства топлива улучшаются после легирования урана, в процессе которого в уран добавляют небольшое количество молибдена, алюминия и других металлов. Легирующие добавки снижают число нейтронов деления на один захват нейтрона ядерным топливом. Поэтому легирующие добавки к урану стремятся выбрать из материалов, слабо поглощающих нейтроны.

К хорошим ядерным топливам относятся некоторые тугоплавкие соединения урана: окислы, карбиды и интерметаллические соединения. Наиболее широкое применение получила керамика — диоксид урана UO2. Её температура плавления равна 2800 °C, плотность — 10,2 г/см³. У диоксида урана нет фазовых переходов, она менее подвержена распуханию, чем сплавы урана. Это позволяет повысить выгорание до нескольких процентов. Диоксид урана не взаимодействует с цирконием, ниобием, нержавеющей сталью и другими материалами при высоких температурах. Основной недостаток керамики — низкая теплопроводность — 4,5 кДж/(м·К), которая ограничивает удельную мощность реактора по температуре плавления. Так, максимальная плотность теплового потока в реакторах ВВЭР на диоксида урана не превышает 1,4·103 кВт/м², при этом максимальная температура в стержневых ТВЭЛах достигает 2200 °C. Кроме того, горячая керамика очень хрупка и может растрескиваться.

Плутоний относится к низкоплавким металлам. Его температура плавления равна 640 °C. У плутония плохие пластические свойства, поэтому он почти не поддаётся механической обработке. Технология изготовления ТВЭЛов усложняется токсичностью плутония. Для приготовления ядерного топлива обычно применяются диоксид плутония, смесь карбидов плутония с карбидами урана, сплавы плутония с металлами.

Высокими теплопроводностью и механическими свойствами обладают дисперсионные топлива, в которых мелкие частицы UO2, UC, PuO2 и других соединений урана и плутония размещают гетерогенно в металлической матрице из алюминия, молибдена, нержавеющей стали и др. Материал матрицы и определяет радиационную стойкость и теплопроводность дисперсионного топлива. Например, дисперсионное топливо Первой АЭС состояло из частиц сплава урана с 9 % молибдена, залитых магнием.

Практическое применение

На АЭС и другие ядерные установки топливо приходит в виде довольно сложных технических устройств — тепловыделяющих сборок (ТВС), которые в зависимости от типа реактора загружаются непосредственно во время его работы (как на реакторах типа РБМК в России) на место выгоревших ТВС или заменяют отработавшие сборки большими группами во время ремонтной кампании (как на российских реакторах ВВЭР или их аналогах в других странах, PWR и других). В последнем случае при каждой новой загрузке меняется чаще всего треть топлива и полностью изменяется его расстановка в активной зоне реактора, наиболее выгоревшие сборки с топливом, из центра активной зоны, выгружаются, на их место ставится вторая треть сборок, со средним выгоранием и расположением. На их место в свою очередь ставятся наименее выгоревшие ТВС, с периферии активной зоны; в то время как на периферию загружается свежее топливо. Такая схема перестановки топлива является традиционной и обусловлена многими причинами, например стремлением обеспечить равномерное энерговыделение в топливе и максимальный запас до кризиса теплообмена воды на оболочках ТВЭЛ.

Описание загрузки ядерного топлива в активную зону реактора, данное выше, всё же является весьма условным, позволяющим иметь общее представление об этом процессе. На самом деле загрузка топлива осуществляется сборками с различными степенями обогащения топлива и её предваряют сложнейшие ядерно-физические расчёты конфигурации активной зоны реактора в специализированном программном обеспечении[3], которые совершаются на годы вперёд и позволяют планировать топливные и ремонтные кампании для увеличения показателей эффективности работы АЭС, например КИУМа. Кроме того, если конфигурация топлива не будет удовлетворять определённым требованиям, важнейшими из которых являются различные коэффициенты неравномерности энерговыделения в активной зоне, реактор не сможет работать вовсе или будет неуправляемым. Кроме различной степени обогащения разных ТВС применяются другие решения для обеспечения нужной конфигурации активной зоны и стабильности её характеристик в течение топливной кампании, например ТВС, в которых вместо некоторых ТВЭЛов содержатся поглощающие элементы (ПЭЛы), которые компенсируют изначальную избыточную реактивность свежего топлива, выгорают в процессе работы реактора и по мере использования топлива всё меньше влияют на его реактивность, что в итоге выравнивает по времени величину энерговыделения на протяжении всего срока работы тепловыделяющей сборки. В настоящий момент в топливе промышленных водо-водяных реакторов во всём мире практически перестали использовать ПЭЛы с борным поглотителем, долгое время являвшимися почти безальтернативными элементами, и перешли на более прогрессивный способ[4] — внесение с теми же целями гадолиниевого выгорающего поглотителя непосредственно в топливную матрицу; этот способ имеет много важных преимуществ.

После выгрузки из активной зоны реактора отработавшего топлива его помещают в специальный бассейн выдержки, обычно располагающийся в непосредственной близости от реактора. Дело в том, что в отработавших ТВС содержится большое количество осколков деления урана, сразу после выгрузки каждый ТВЭЛ в среднем содержит 300000 Кюри радиоактивных веществ, которые выделяют энергию 100 кВт*час. За счёт этой энергии использованное ядерное топливо имеет свойство саморазогреваться до больших температур без принятия специальных мер (недавно выгруженное топливо может разогреться на воздухе примерно до 300 °C) и является высокорадиоактивным, поэтому его хранят 3-4 года в бассейнах с определённым температурным режимом под слоем воды, защищающим персонал от ионизирующего излучения продуктов распада урана. По мере выдержки уменьшается радиоактивность топлива и мощность его остаточных энерговыделений, обычно через 3 года, когда саморазогрев ТВС сокращается до 50-60 °C, его извлекают и отправляют для хранения, захоронения или переработки[5][6][7][8].

Получение

Урановое топливо

Урановое ядерное топливо получают переработкой руд. Процесс происходит в несколько этапов:

  • Для бедных месторождений: В современной промышленности в силу отсутствия богатых урановых руд (исключения составляют канадские и австралийские месторождения типа несогласия[9], в которых концентрация урана доходит до 3 %) используется способ подземного выщелачивания руд. Это исключает дорогостоящую добычу руды. Предварительная подготовка идёт непосредственно под землёй. Через закачные скважины под землю над месторождением закачивается серная кислота, иногда с добавлением солей трёхвалентного железа (для окисления урана U (IV) до U (VI)), хотя руды часто содержат железо и пиролюзит, которые облегчают окисление. Через откачные скважины специальными насосами раствор серной кислоты с ураном поднимается на поверхность. Далее он непосредственно поступает на сорбционное, гидрометаллургическое извлечение и одновременное обогащение урана.
  • Для рудных месторождений: используют обогащение руды и радиометрическое обогащение руды.
  • Гидрометаллургическая переработка — дробление, выщелачивание, сорбционное или экстракционное извлечение урана с получением очищенной закиси-окиси урана (U3O8), диураната натрия (Na2U2O7) или диураната аммония ((Nh5)2U2O7).
  • Перевод урана из оксида в тетрафторид UF4, или из оксидов непосредственно для получения гексафторида UF6, который используется для обогащения урана по изотопу 235.
  • Обогащение методами газовой термодиффузии или центрифугированием.
  • UF6, обогащенный по 235 изотопу переводят в диоксид UO2, из которой изготавливают «таблетки» ТВЭЛов или получают другие соединения урана с этой же целью.

Ториевое топливо

Информация в этой статье или некоторых её разделах устарела.

Вы можете помочь проекту, обновив её и убрав после этого данный шаблон.

Торий в настоящее время в качестве сырья для производства ядерного топлива не применяется в силу следующих причин:

  1. Запасы урана достаточно велики;
  2. Образование 232U, который, в свою очередь, образует γ-активные ядра 212Bi, 208Tl, затрудняющие производство ТВЭЛов;
  3. Переработка облучённых ториевых ТВЭЛов сложнее и дороже переработки урановых.

Плутониевое топливо

Плутониевое ядерное топливо в настоящее время также не применяется, что связано с его крайне сложной химией. За многолетнюю историю атомной промышленности неоднократно предпринимались попытки использования плутония как в виде чистых соединений, так и в смеси с соединениями урана, однако успехом они не увенчались. Топливо для АЭС, содержащее плутоний, называется MOX-топливо. Применение его в реакторах ВВЭР нецелесообразно из-за уменьшения примерно в 2 раза периода разгона[11], на что не рассчитаны штатные системы управления реактором.

Регенерация

При работе ядерного реактора топливо выгорает не полностью, имеет место процесс воспроизводства отдельных изотопов (Pu). В связи с этим отработанные ТВЭЛы направляют на переработку для регенерации топлива и повторного его использования.

В настоящее время для этих целей наиболее широко применяется пьюрекс-процесс, суть которого состоит в следующем: ТВЭЛы разрезают на части и растворяют в азотной кислоте, далее раствор очищают от продуктов деления и элементов оболочки, выделяют чистые соединения U и Pu. Затем полученный диоксид плутония PuO2 направляют на изготовление новых сердечников, а уран либо на изготовление сердечников, либо на обогащение 235U.

Переработка и регенерация высокорадиоактивных веществ — сложный и дорогостоящий процесс. ТВЭЛы после извлечения из реакторов проходят выдержку в течение нескольких лет (обычно 3—6) в специальных хранилищах. Трудности вызывает также переработка и захоронение отходов, непригодных к регенерации. Стоимость всех этих мер оказывает существенное влияние на экономическую эффективность атомных электростанций.

Примечания

  1. ↑ Изотопы: свойства, получение, применение. В 2 т. Т. 2/ Под ред. В. Ю. Баранова. - М.: Физматлит, 2005, с. 115.
  2. ↑ Харьковский физико-технический институт, Наукова думка, Киев, 1978, стр. 45.
  3. ↑ например в России БИПР-7А (разработки Курчатовского института) для ВВЭР и DINA-РБМК для РБМК (разработки НИКИЭТ имени Н. А. Доллежаля) или программа WIMS-D/4, использующаяся для расчёта некоторых европейских реакторов
  4. ↑ промышленная эксплуатация такого топлива в России насчитывает примерно 10 лет
  5. ↑ Бартоломей Г.Г., Байбаков В.Д., Алхутов М.С., Бать Г.А. Основы теории и методы расчёта ядерных энергетических реакторов. — М.: Энергоатомиздат, 1982.
  6. ↑ Т.Х.Маргулова. Атомные электрические станции. — М.: ИздАТ, 1994.
  7. ↑ Б.А.Дементьев. Кинетика и регулирование ядерных реакторов. — М.: Энергоатомиздат, 1986.
  8. ↑ Пособие по физике реактора ВВЭР-1000.—БАЭС, ЦПП, 2003
  9. ↑ Формирование урановых месторождений «типа несогласия» с богатыми рудами связывается, прежде всего, с древними (протерозойскими) рудообразующими процессами, проявленными в зонах структурно-стратиграфических несогласий (ССН). Соответственно, перспективными для обнаружения месторождений данного типа являются районы широкого развития докембрийских формаций — щиты, срединные массивы и выступы кристаллического фундамента. К таким тектоническим структурам в России относятся Балтийский щит, Воронежский кристаллический массив, Восточно-Саянский, Патомский и Алданский районы южного обрамления Сибирской платформы, Анабарский щит и Омолонский массив, примыкающая к Северному Ледовитому океану часть полуострова Таймыр и северо-восточное окончание Чукотки.
  10. ↑ англ. Yellowcake
  11. ↑ Период разгона реактора — время, за которое мощность ядерного реактора изменяется в e раз.

Литература

  • БСЭ
  • Петунин В. П. Теплоэнергетика ядерных установок М.: Атомиздат, 1960.
  • Левин В. Е. Ядерная физика и ядерные реакторы 4-е изд. — М.: Атомиздат, 1979.

www-wikipediya.ru

Ядерное топливо — Википедия РУ

ТВС (тепловыделяющая сборка) Топливные таблетки.

Я́дерное то́пливо — материалы, которые используются в ядерных реакторах для осуществления управляемой цепной ядерной реакции деления. Ядерное топливо принципиально отличается от других видов топлива, используемых человечеством, оно чрезвычайно энергоемко, но и весьма опасно для человека, что накладывает множество ограничений на его использование из соображений безопасности. По этой и многим другим причинам ядерное топливо гораздо сложнее в применении, чем любой вид органического топлива, и требует множества специальных технических и организационных мер при его использовании, а также высокую квалификацию персонала, имеющего с ним дело.

Общая информация

Цепная ядерная реакция представляет собой деление ядра на две части, называемые осколками деления, с одновременным выделением нескольких (2—3) нейтронов, которые, в свою очередь, могут вызвать деление следующих ядер. Такое деление происходит при попадании нейтрона в ядро атома исходного вещества. Образующиеся при делении ядра осколки деления обладают большой кинетической энергией. Торможение осколков деления в веществе сопровождается выделением большого количества тепла. Осколки деления — это ядра, образовавшиеся непосредственно в результате деления. Осколки деления и продукты их радиоактивного распада обычно называют продуктами деления. Ядра, делящиеся нейтронами любых энергий, называют ядерным горючим (как правило, это вещества с нечётным атомным числом). Существуют ядра, которые делятся только нейтронами с энергией выше некоторого порогового значения (как правило, это элементы с чётным атомным числом). Такие ядра называют сырьевым материалом, так как при захвате нейтрона пороговым ядром образуются ядра ядерного горючего. Комбинация ядерного горючего и сырьевого материала называется ядерным топливом. Ниже приведено распределение энергии деления ядра 235U между различными продуктами деления (в МэВ):

Полная энергия деления ~200 100%
Кинетическая энергия осколков деления 162 81%
Кинетическая энергия нейтронов деления 5 2,5%
Энергия γ-излучения, сопровождающего захват нейтронов 10 5%
Энергия γ-излучения продуктов деления 6 3%
Энергия β-излучения продуктов деления 5 2,5%
Энергия, уносимая нейтрино 11 5,5%

Так как энергия нейтрино уносится безвозвратно, доступно для использования только 188 МэВ/атом = 30 пДж/атом = 18 ТДж/моль = 76,6 ТДж/кг (по другим данным (см. ссылку) 205,2 - 8,6 = 196,6 МэВ/атом)[1].

Природный уран состоит из трёх изотопов: 238U (99,282 %), 235U (0,712 %) и 234U (0,006 %). Он не всегда пригоден как ядерное топливо, особенно если конструкционные материалы и замедлитель интенсивно поглощают нейтроны. В этом случае ядерное топливо изготавливают на основе обогащённого урана. В энергетических реакторах на тепловых нейтронах используют уран с обогащением менее 6 %, а в реакторах на быстрых и промежуточных нейтронах обогащение урана превышает 20 %. Обогащённый уран получают на специальных обогатительных заводах.

Классификация

Ядерное топливо делится на два вида:

  • Природное урановое, содержащее делящиеся ядра 235U, а также сырьё 238U, способное при захвате нейтрона образовывать плутоний 239Pu;
  • Вторичное топливо, которое не встречается в природе, в том числе 239Pu, получаемый из топлива первого вида, а также изотопы 233U, образующиеся при захвате нейтронов ядрами тория 232Th.

По химическому составу, ядерное топливо может быть:

Теоретические аспекты применения

  На выделенном фрагменте этого муляжа ТВС с вырезанными для удобства обзора секторами ТВЭЛов видны топливные таблетки.

Ядерное топливо используется в ядерных реакторах в виде таблеток размером в несколько сантиметров, где оно обычно располагается в герметично закрытых тепловыделяющих элементах (ТВЭЛах), которые в свою очередь для удобства использования объединяются по нескольку сотен в тепловыделяющие сборки (ТВС).

К ядерному топливу применяются высокие требования по химической совместимости с оболочками ТВЭЛов, у него должна быть достаточная температура плавления и испарения, хорошая теплопроводность, небольшое увеличение объёма при нейтронном облучении, технологичность производства.

Металлический уран сравнительно редко используют как ядерное топливо. Его максимальная температура ограничена 660 °C. При этой температуре происходит фазовый переход, в котором изменяется кристаллическая структура урана. Фазовый переход сопровождается увеличением объёма урана, что может привести к разрушению оболочки ТВЭЛов. При длительном облучении в температурном интервале 200—500 °C уран подвержен радиационному росту. Это явление заключается в том, что облучённый урановый стержень удлиняется. Экспериментально наблюдалось увеличение длины уранового стержня в два — три раза[2].

Использование металлического урана, особенно при температуре больше 500 °C, затруднено из-за его распухания. После деления ядра образуются два осколка деления, суммарный объём которых больше объёма атома урана (плутония). Часть атомов — осколков деления являются атомами газов (криптона, ксенона и др.). Атомы газов накапливаются в по́рах урана и создают внутреннее давление, которое увеличивается с повышением температуры. За счёт изменения объёма атомов в процессе деления и повышения внутреннего давления газов уран и другие ядерные топлива начинают распухать. Под распуханием понимают относительное изменение объёма ядерного топлива, связанное с делением ядер.

Распухание зависит от выгорания и температуры ТВЭЛов. Количество осколков деления возрастает с увеличением выгорания, а внутреннее давление газа — с увеличением выгорания и температуры. Распухание ядерного топлива может привести к разрушению оболочки ТВЭЛа. Ядерное топливо менее подвержено распуханию, если оно обладает высокими механическими свойствами. Металлический уран как раз не относится к таким материалам. Поэтому применение металлического урана в качестве ядерного топлива ограничивает глубину выгорания, которая является одной из главных характеристик ядерного топлива.

Радиационная стойкость и механические свойства топлива улучшаются после легирования урана, в процессе которого в уран добавляют небольшое количество молибдена, алюминия и других металлов. Легирующие добавки снижают число нейтронов деления на один захват нейтрона ядерным топливом. Поэтому легирующие добавки к урану стремятся выбрать из материалов, слабо поглощающих нейтроны.

К хорошим ядерным топливам относятся некоторые тугоплавкие соединения урана: окислы, карбиды и интерметаллические соединения. Наиболее широкое применение получила керамика — диоксид урана UO2. Её температура плавления равна 2800 °C, плотность — 10,2 г/см³. У диоксида урана нет фазовых переходов, она менее подвержена распуханию, чем сплавы урана. Это позволяет повысить выгорание до нескольких процентов. Диоксид урана не взаимодействует с цирконием, ниобием, нержавеющей сталью и другими материалами при высоких температурах. Основной недостаток керамики — низкая теплопроводность — 4,5 кДж/(м·К), которая ограничивает удельную мощность реактора по температуре плавления. Так, максимальная плотность теплового потока в реакторах ВВЭР на диоксида урана не превышает 1,4·103 кВт/м², при этом максимальная температура в стержневых ТВЭЛах достигает 2200 °C. Кроме того, горячая керамика очень хрупка и может растрескиваться.

Плутоний относится к низкоплавким металлам. Его температура плавления равна 640 °C. У плутония плохие пластические свойства, поэтому он почти не поддаётся механической обработке. Технология изготовления ТВЭЛов усложняется токсичностью плутония. Для приготовления ядерного топлива обычно применяются диоксид плутония, смесь карбидов плутония с карбидами урана, сплавы плутония с металлами.

Высокими теплопроводностью и механическими свойствами обладают дисперсионные топлива, в которых мелкие частицы UO2, UC, PuO2 и других соединений урана и плутония размещают гетерогенно в металлической матрице из алюминия, молибдена, нержавеющей стали и др. Материал матрицы и определяет радиационную стойкость и теплопроводность дисперсионного топлива. Например, дисперсионное топливо Первой АЭС состояло из частиц сплава урана с 9 % молибдена, залитых магнием.

Практическое применение

На АЭС и другие ядерные установки топливо приходит в виде довольно сложных технических устройств — тепловыделяющих сборок (ТВС), которые в зависимости от типа реактора загружаются непосредственно во время его работы (как на реакторах типа РБМК в России) на место выгоревших ТВС или заменяют отработавшие сборки большими группами во время ремонтной кампании (как на российских реакторах ВВЭР или их аналогах в других странах, PWR и других). В последнем случае при каждой новой загрузке меняется чаще всего треть топлива и полностью изменяется его расстановка в активной зоне реактора, наиболее выгоревшие сборки с топливом, из центра активной зоны, выгружаются, на их место ставится вторая треть сборок, со средним выгоранием и расположением. На их место в свою очередь ставятся наименее выгоревшие ТВС, с периферии активной зоны; в то время как на периферию загружается свежее топливо. Такая схема перестановки топлива является традиционной и обусловлена многими причинами, например стремлением обеспечить равномерное энерговыделение в топливе и максимальный запас до кризиса теплообмена воды на оболочках ТВЭЛ.

Описание загрузки ядерного топлива в активную зону реактора, данное выше, всё же является весьма условным, позволяющим иметь общее представление об этом процессе. На самом деле загрузка топлива осуществляется сборками с различными степенями обогащения топлива и её предваряют сложнейшие ядерно-физические расчёты конфигурации активной зоны реактора в специализированном программном обеспечении[3], которые совершаются на годы вперёд и позволяют планировать топливные и ремонтные кампании для увеличения показателей эффективности работы АЭС, например КИУМа. Кроме того, если конфигурация топлива не будет удовлетворять определённым требованиям, важнейшими из которых являются различные коэффициенты неравномерности энерговыделения в активной зоне, реактор не сможет работать вовсе или будет неуправляемым. Кроме различной степени обогащения разных ТВС применяются другие решения для обеспечения нужной конфигурации активной зоны и стабильности её характеристик в течение топливной кампании, например ТВС, в которых вместо некоторых ТВЭЛов содержатся поглощающие элементы (ПЭЛы), которые компенсируют изначальную избыточную реактивность свежего топлива, выгорают в процессе работы реактора и по мере использования топлива всё меньше влияют на его реактивность, что в итоге выравнивает по времени величину энерговыделения на протяжении всего срока работы тепловыделяющей сборки. В настоящий момент в топливе промышленных водо-водяных реакторов во всём мире практически перестали использовать ПЭЛы с борным поглотителем, долгое время являвшимися почти безальтернативными элементами, и перешли на более прогрессивный способ[4] — внесение с теми же целями гадолиниевого выгорающего поглотителя непосредственно в топливную матрицу; этот способ имеет много важных преимуществ.

После выгрузки из активной зоны реактора отработавшего топлива его помещают в специальный бассейн выдержки, обычно располагающийся в непосредственной близости от реактора. Дело в том, что в отработавших ТВС содержится большое количество осколков деления урана, сразу после выгрузки каждый ТВЭЛ в среднем содержит 300000 Кюри радиоактивных веществ, которые выделяют энергию 100 кВт*час. За счёт этой энергии использованное ядерное топливо имеет свойство саморазогреваться до больших температур без принятия специальных мер (недавно выгруженное топливо может разогреться на воздухе примерно до 300 °C) и является высокорадиоактивным, поэтому его хранят 3-4 года в бассейнах с определённым температурным режимом под слоем воды, защищающим персонал от ионизирующего излучения продуктов распада урана. По мере выдержки уменьшается радиоактивность топлива и мощность его остаточных энерговыделений, обычно через 3 года, когда саморазогрев ТВС сокращается до 50-60 °C, его извлекают и отправляют для хранения, захоронения или переработки[5][6][7][8].

Получение

Урановое топливо

Урановое ядерное топливо получают переработкой руд. Процесс происходит в несколько этапов:

  • Для бедных месторождений: В современной промышленности в силу отсутствия богатых урановых руд (исключения составляют канадские и австралийские месторождения типа несогласия[9], в которых концентрация урана доходит до 3 %) используется способ подземного выщелачивания руд. Это исключает дорогостоящую добычу руды. Предварительная подготовка идёт непосредственно под землёй. Через закачные скважины под землю над месторождением закачивается серная кислота, иногда с добавлением солей трёхвалентного железа (для окисления урана U (IV) до U (VI)), хотя руды часто содержат железо и пиролюзит, которые облегчают окисление. Через откачные скважины специальными насосами раствор серной кислоты с ураном поднимается на поверхность. Далее он непосредственно поступает на сорбционное, гидрометаллургическое извлечение и одновременное обогащение урана.
  • Для рудных месторождений: используют обогащение руды и радиометрическое обогащение руды.
  • Гидрометаллургическая переработка — дробление, выщелачивание, сорбционное или экстракционное извлечение урана с получением очищенной закиси-окиси урана (U3O8), диураната натрия (Na2U2O7) или диураната аммония ((Nh5)2U2O7).
  • Перевод урана из оксида в тетрафторид UF4, или из оксидов непосредственно для получения гексафторида UF6, который используется для обогащения урана по изотопу 235.
  • Обогащение методами газовой термодиффузии или центрифугированием.
  • UF6, обогащенный по 235 изотопу переводят в диоксид UO2, из которой изготавливают «таблетки» ТВЭЛов или получают другие соединения урана с этой же целью.

Ториевое топливо

Информация в этой статье или некоторых её разделах устарела.

Вы можете помочь проекту, обновив её и убрав после этого данный шаблон.

Торий в настоящее время в качестве сырья для производства ядерного топлива не применяется в силу следующих причин:

  1. Запасы урана достаточно велики;
  2. Образование 232U, который, в свою очередь, образует γ-активные ядра 212Bi, 208Tl, затрудняющие производство ТВЭЛов;
  3. Переработка облучённых ториевых ТВЭЛов сложнее и дороже переработки урановых.

Плутониевое топливо

Плутониевое ядерное топливо в настоящее время также не применяется, что связано с его крайне сложной химией. За многолетнюю историю атомной промышленности неоднократно предпринимались попытки использования плутония как в виде чистых соединений, так и в смеси с соединениями урана, однако успехом они не увенчались. Топливо для АЭС, содержащее плутоний, называется MOX-топливо. Применение его в реакторах ВВЭР нецелесообразно из-за уменьшения примерно в 2 раза периода разгона[11], на что не рассчитаны штатные системы управления реактором.

Регенерация

При работе ядерного реактора топливо выгорает не полностью, имеет место процесс воспроизводства отдельных изотопов (Pu). В связи с этим отработанные ТВЭЛы направляют на переработку для регенерации топлива и повторного его использования.

В настоящее время для этих целей наиболее широко применяется пьюрекс-процесс, суть которого состоит в следующем: ТВЭЛы разрезают на части и растворяют в азотной кислоте, далее раствор очищают от продуктов деления и элементов оболочки, выделяют чистые соединения U и Pu. Затем полученный диоксид плутония PuO2 направляют на изготовление новых сердечников, а уран либо на изготовление сердечников, либо на обогащение 235U.

Переработка и регенерация высокорадиоактивных веществ — сложный и дорогостоящий процесс. ТВЭЛы после извлечения из реакторов проходят выдержку в течение нескольких лет (обычно 3—6) в специальных хранилищах. Трудности вызывает также переработка и захоронение отходов, непригодных к регенерации. Стоимость всех этих мер оказывает существенное влияние на экономическую эффективность атомных электростанций.

Примечания

  1. ↑ Изотопы: свойства, получение, применение. В 2 т. Т. 2/ Под ред. В. Ю. Баранова. - М.: Физматлит, 2005, с. 115.
  2. ↑ Харьковский физико-технический институт, Наукова думка, Киев, 1978, стр. 45.
  3. ↑ например в России БИПР-7А (разработки Курчатовского института) для ВВЭР и DINA-РБМК для РБМК (разработки НИКИЭТ имени Н. А. Доллежаля) или программа WIMS-D/4, использующаяся для расчёта некоторых европейских реакторов
  4. ↑ промышленная эксплуатация такого топлива в России насчитывает примерно 10 лет
  5. ↑ Бартоломей Г.Г., Байбаков В.Д., Алхутов М.С., Бать Г.А. Основы теории и методы расчёта ядерных энергетических реакторов. — М.: Энергоатомиздат, 1982.
  6. ↑ Т.Х.Маргулова. Атомные электрические станции. — М.: ИздАТ, 1994.
  7. ↑ Б.А.Дементьев. Кинетика и регулирование ядерных реакторов. — М.: Энергоатомиздат, 1986.
  8. ↑ Пособие по физике реактора ВВЭР-1000.—БАЭС, ЦПП, 2003
  9. ↑ Формирование урановых месторождений «типа несогласия» с богатыми рудами связывается, прежде всего, с древними (протерозойскими) рудообразующими процессами, проявленными в зонах структурно-стратиграфических несогласий (ССН). Соответственно, перспективными для обнаружения месторождений данного типа являются районы широкого развития докембрийских формаций — щиты, срединные массивы и выступы кристаллического фундамента. К таким тектоническим структурам в России относятся Балтийский щит, Воронежский кристаллический массив, Восточно-Саянский, Патомский и Алданский районы южного обрамления Сибирской платформы, Анабарский щит и Омолонский массив, примыкающая к Северному Ледовитому океану часть полуострова Таймыр и северо-восточное окончание Чукотки.
  10. ↑ англ. Yellowcake
  11. ↑ Период разгона реактора — время, за которое мощность ядерного реактора изменяется в e раз.

Литература

  • БСЭ
  • Петунин В. П. Теплоэнергетика ядерных установок М.: Атомиздат, 1960.
  • Левин В. Е. Ядерная физика и ядерные реакторы 4-е изд. — М.: Атомиздат, 1979.

http-wikipediya.ru

Ядерное топливо — википедия фото

ТВС (тепловыделяющая сборка) Топливные таблетки.

Я́дерное то́пливо — материалы, которые используются в ядерных реакторах для осуществления управляемой цепной ядерной реакции деления. Ядерное топливо принципиально отличается от других видов топлива, используемых человечеством, оно чрезвычайно энергоемко, но и весьма опасно для человека, что накладывает множество ограничений на его использование из соображений безопасности. По этой и многим другим причинам ядерное топливо гораздо сложнее в применении, чем любой вид органического топлива, и требует множества специальных технических и организационных мер при его использовании, а также высокую квалификацию персонала, имеющего с ним дело.

Общая информация

Цепная ядерная реакция представляет собой деление ядра на две части, называемые осколками деления, с одновременным выделением нескольких (2—3) нейтронов, которые, в свою очередь, могут вызвать деление следующих ядер. Такое деление происходит при попадании нейтрона в ядро атома исходного вещества. Образующиеся при делении ядра осколки деления обладают большой кинетической энергией. Торможение осколков деления в веществе сопровождается выделением большого количества тепла. Осколки деления — это ядра, образовавшиеся непосредственно в результате деления. Осколки деления и продукты их радиоактивного распада обычно называют продуктами деления. Ядра, делящиеся нейтронами любых энергий, называют ядерным горючим (как правило, это вещества с нечётным атомным числом). Существуют ядра, которые делятся только нейтронами с энергией выше некоторого порогового значения (как правило, это элементы с чётным атомным числом). Такие ядра называют сырьевым материалом, так как при захвате нейтрона пороговым ядром образуются ядра ядерного горючего. Комбинация ядерного горючего и сырьевого материала называется ядерным топливом. Ниже приведено распределение энергии деления ядра 235U между различными продуктами деления (в МэВ):

Полная энергия деления ~200 100%
Кинетическая энергия осколков деления 162 81%
Кинетическая энергия нейтронов деления 5 2,5%
Энергия γ-излучения, сопровождающего захват нейтронов 10 5%
Энергия γ-излучения продуктов деления 6 3%
Энергия β-излучения продуктов деления 5 2,5%
Энергия, уносимая нейтрино 11 5,5%

Так как энергия нейтрино уносится безвозвратно, доступно для использования только 188 МэВ/атом = 30 пДж/атом = 18 ТДж/моль = 76,6 ТДж/кг (по другим данным (см. ссылку) 205,2 - 8,6 = 196,6 МэВ/атом)[1].

Природный уран состоит из трёх изотопов: 238U (99,282 %), 235U (0,712 %) и 234U (0,006 %). Он не всегда пригоден как ядерное топливо, особенно если конструкционные материалы и замедлитель интенсивно поглощают нейтроны. В этом случае ядерное топливо изготавливают на основе обогащённого урана. В энергетических реакторах на тепловых нейтронах используют уран с обогащением менее 6 %, а в реакторах на быстрых и промежуточных нейтронах обогащение урана превышает 20 %. Обогащённый уран получают на специальных обогатительных заводах.

Классификация

Ядерное топливо делится на два вида:

  • Природное урановое, содержащее делящиеся ядра 235U, а также сырьё 238U, способное при захвате нейтрона образовывать плутоний 239Pu;
  • Вторичное топливо, которое не встречается в природе, в том числе 239Pu, получаемый из топлива первого вида, а также изотопы 233U, образующиеся при захвате нейтронов ядрами тория 232Th.

По химическому составу, ядерное топливо может быть:

Теоретические аспекты применения

  На выделенном фрагменте этого муляжа ТВС с вырезанными для удобства обзора секторами ТВЭЛов видны топливные таблетки.

Ядерное топливо используется в ядерных реакторах в виде таблеток размером в несколько сантиметров, где оно обычно располагается в герметично закрытых тепловыделяющих элементах (ТВЭЛах), которые в свою очередь для удобства использования объединяются по нескольку сотен в тепловыделяющие сборки (ТВС).

К ядерному топливу применяются высокие требования по химической совместимости с оболочками ТВЭЛов, у него должна быть достаточная температура плавления и испарения, хорошая теплопроводность, небольшое увеличение объёма при нейтронном облучении, технологичность производства.

Металлический уран сравнительно редко используют как ядерное топливо. Его максимальная температура ограничена 660 °C. При этой температуре происходит фазовый переход, в котором изменяется кристаллическая структура урана. Фазовый переход сопровождается увеличением объёма урана, что может привести к разрушению оболочки ТВЭЛов. При длительном облучении в температурном интервале 200—500 °C уран подвержен радиационному росту. Это явление заключается в том, что облучённый урановый стержень удлиняется. Экспериментально наблюдалось увеличение длины уранового стержня в два — три раза[2].

Использование металлического урана, особенно при температуре больше 500 °C, затруднено из-за его распухания. После деления ядра образуются два осколка деления, суммарный объём которых больше объёма атома урана (плутония). Часть атомов — осколков деления являются атомами газов (криптона, ксенона и др.). Атомы газов накапливаются в по́рах урана и создают внутреннее давление, которое увеличивается с повышением температуры. За счёт изменения объёма атомов в процессе деления и повышения внутреннего давления газов уран и другие ядерные топлива начинают распухать. Под распуханием понимают относительное изменение объёма ядерного топлива, связанное с делением ядер.

Распухание зависит от выгорания и температуры ТВЭЛов. Количество осколков деления возрастает с увеличением выгорания, а внутреннее давление газа — с увеличением выгорания и температуры. Распухание ядерного топлива может привести к разрушению оболочки ТВЭЛа. Ядерное топливо менее подвержено распуханию, если оно обладает высокими механическими свойствами. Металлический уран как раз не относится к таким материалам. Поэтому применение металлического урана в качестве ядерного топлива ограничивает глубину выгорания, которая является одной из главных характеристик ядерного топлива.

Радиационная стойкость и механические свойства топлива улучшаются после легирования урана, в процессе которого в уран добавляют небольшое количество молибдена, алюминия и других металлов. Легирующие добавки снижают число нейтронов деления на один захват нейтрона ядерным топливом. Поэтому легирующие добавки к урану стремятся выбрать из материалов, слабо поглощающих нейтроны.

К хорошим ядерным топливам относятся некоторые тугоплавкие соединения урана: окислы, карбиды и интерметаллические соединения. Наиболее широкое применение получила керамика — диоксид урана UO2. Её температура плавления равна 2800 °C, плотность — 10,2 г/см³. У диоксида урана нет фазовых переходов, она менее подвержена распуханию, чем сплавы урана. Это позволяет повысить выгорание до нескольких процентов. Диоксид урана не взаимодействует с цирконием, ниобием, нержавеющей сталью и другими материалами при высоких температурах. Основной недостаток керамики — низкая теплопроводность — 4,5 кДж/(м·К), которая ограничивает удельную мощность реактора по температуре плавления. Так, максимальная плотность теплового потока в реакторах ВВЭР на диоксида урана не превышает 1,4·103 кВт/м², при этом максимальная температура в стержневых ТВЭЛах достигает 2200 °C. Кроме того, горячая керамика очень хрупка и может растрескиваться.

Плутоний относится к низкоплавким металлам. Его температура плавления равна 640 °C. У плутония плохие пластические свойства, поэтому он почти не поддаётся механической обработке. Технология изготовления ТВЭЛов усложняется токсичностью плутония. Для приготовления ядерного топлива обычно применяются диоксид плутония, смесь карбидов плутония с карбидами урана, сплавы плутония с металлами.

Высокими теплопроводностью и механическими свойствами обладают дисперсионные топлива, в которых мелкие частицы UO2, UC, PuO2 и других соединений урана и плутония размещают гетерогенно в металлической матрице из алюминия, молибдена, нержавеющей стали и др. Материал матрицы и определяет радиационную стойкость и теплопроводность дисперсионного топлива. Например, дисперсионное топливо Первой АЭС состояло из частиц сплава урана с 9 % молибдена, залитых магнием.

Практическое применение

На АЭС и другие ядерные установки топливо приходит в виде довольно сложных технических устройств — тепловыделяющих сборок (ТВС), которые в зависимости от типа реактора загружаются непосредственно во время его работы (как на реакторах типа РБМК в России) на место выгоревших ТВС или заменяют отработавшие сборки большими группами во время ремонтной кампании (как на российских реакторах ВВЭР или их аналогах в других странах, PWR и других). В последнем случае при каждой новой загрузке меняется чаще всего треть топлива и полностью изменяется его расстановка в активной зоне реактора, наиболее выгоревшие сборки с топливом, из центра активной зоны, выгружаются, на их место ставится вторая треть сборок, со средним выгоранием и расположением. На их место в свою очередь ставятся наименее выгоревшие ТВС, с периферии активной зоны; в то время как на периферию загружается свежее топливо. Такая схема перестановки топлива является традиционной и обусловлена многими причинами, например стремлением обеспечить равномерное энерговыделение в топливе и максимальный запас до кризиса теплообмена воды на оболочках ТВЭЛ.

Описание загрузки ядерного топлива в активную зону реактора, данное выше, всё же является весьма условным, позволяющим иметь общее представление об этом процессе. На самом деле загрузка топлива осуществляется сборками с различными степенями обогащения топлива и её предваряют сложнейшие ядерно-физические расчёты конфигурации активной зоны реактора в специализированном программном обеспечении[3], которые совершаются на годы вперёд и позволяют планировать топливные и ремонтные кампании для увеличения показателей эффективности работы АЭС, например КИУМа. Кроме того, если конфигурация топлива не будет удовлетворять определённым требованиям, важнейшими из которых являются различные коэффициенты неравномерности энерговыделения в активной зоне, реактор не сможет работать вовсе или будет неуправляемым. Кроме различной степени обогащения разных ТВС применяются другие решения для обеспечения нужной конфигурации активной зоны и стабильности её характеристик в течение топливной кампании, например ТВС, в которых вместо некоторых ТВЭЛов содержатся поглощающие элементы (ПЭЛы), которые компенсируют изначальную избыточную реактивность свежего топлива, выгорают в процессе работы реактора и по мере использования топлива всё меньше влияют на его реактивность, что в итоге выравнивает по времени величину энерговыделения на протяжении всего срока работы тепловыделяющей сборки. В настоящий момент в топливе промышленных водо-водяных реакторов во всём мире практически перестали использовать ПЭЛы с борным поглотителем, долгое время являвшимися почти безальтернативными элементами, и перешли на более прогрессивный способ[4] — внесение с теми же целями гадолиниевого выгорающего поглотителя непосредственно в топливную матрицу; этот способ имеет много важных преимуществ.

После выгрузки из активной зоны реактора отработавшего топлива его помещают в специальный бассейн выдержки, обычно располагающийся в непосредственной близости от реактора. Дело в том, что в отработавших ТВС содержится большое количество осколков деления урана, сразу после выгрузки каждый ТВЭЛ в среднем содержит 300000 Кюри радиоактивных веществ, которые выделяют энергию 100 кВт*час. За счёт этой энергии использованное ядерное топливо имеет свойство саморазогреваться до больших температур без принятия специальных мер (недавно выгруженное топливо может разогреться на воздухе примерно до 300 °C) и является высокорадиоактивным, поэтому его хранят 3-4 года в бассейнах с определённым температурным режимом под слоем воды, защищающим персонал от ионизирующего излучения продуктов распада урана. По мере выдержки уменьшается радиоактивность топлива и мощность его остаточных энерговыделений, обычно через 3 года, когда саморазогрев ТВС сокращается до 50-60 °C, его извлекают и отправляют для хранения, захоронения или переработки[5][6][7][8].

Получение

Урановое топливо

Урановое ядерное топливо получают переработкой руд. Процесс происходит в несколько этапов:

  • Для бедных месторождений: В современной промышленности в силу отсутствия богатых урановых руд (исключения составляют канадские и австралийские месторождения типа несогласия[9], в которых концентрация урана доходит до 3 %) используется способ подземного выщелачивания руд. Это исключает дорогостоящую добычу руды. Предварительная подготовка идёт непосредственно под землёй. Через закачные скважины под землю над месторождением закачивается серная кислота, иногда с добавлением солей трёхвалентного железа (для окисления урана U (IV) до U (VI)), хотя руды часто содержат железо и пиролюзит, которые облегчают окисление. Через откачные скважины специальными насосами раствор серной кислоты с ураном поднимается на поверхность. Далее он непосредственно поступает на сорбционное, гидрометаллургическое извлечение и одновременное обогащение урана.
  • Для рудных месторождений: используют обогащение руды и радиометрическое обогащение руды.
  • Гидрометаллургическая переработка — дробление, выщелачивание, сорбционное или экстракционное извлечение урана с получением очищенной закиси-окиси урана (U3O8), диураната натрия (Na2U2O7) или диураната аммония ((Nh5)2U2O7).
  • Перевод урана из оксида в тетрафторид UF4, или из оксидов непосредственно для получения гексафторида UF6, который используется для обогащения урана по изотопу 235.
  • Обогащение методами газовой термодиффузии или центрифугированием.
  • UF6, обогащенный по 235 изотопу переводят в диоксид UO2, из которой изготавливают «таблетки» ТВЭЛов или получают другие соединения урана с этой же целью.

Ториевое топливо

Информация в этой статье или некоторых её разделах устарела.

Вы можете помочь проекту, обновив её и убрав после этого данный шаблон.

Торий в настоящее время в качестве сырья для производства ядерного топлива не применяется в силу следующих причин:

  1. Запасы урана достаточно велики;
  2. Образование 232U, который, в свою очередь, образует γ-активные ядра 212Bi, 208Tl, затрудняющие производство ТВЭЛов;
  3. Переработка облучённых ториевых ТВЭЛов сложнее и дороже переработки урановых.

Плутониевое топливо

Плутониевое ядерное топливо в настоящее время также не применяется, что связано с его крайне сложной химией. За многолетнюю историю атомной промышленности неоднократно предпринимались попытки использования плутония как в виде чистых соединений, так и в смеси с соединениями урана, однако успехом они не увенчались. Топливо для АЭС, содержащее плутоний, называется MOX-топливо. Применение его в реакторах ВВЭР нецелесообразно из-за уменьшения примерно в 2 раза периода разгона[11], на что не рассчитаны штатные системы управления реактором.

Регенерация

При работе ядерного реактора топливо выгорает не полностью, имеет место процесс воспроизводства отдельных изотопов (Pu). В связи с этим отработанные ТВЭЛы направляют на переработку для регенерации топлива и повторного его использования.

В настоящее время для этих целей наиболее широко применяется пьюрекс-процесс, суть которого состоит в следующем: ТВЭЛы разрезают на части и растворяют в азотной кислоте, далее раствор очищают от продуктов деления и элементов оболочки, выделяют чистые соединения U и Pu. Затем полученный диоксид плутония PuO2 направляют на изготовление новых сердечников, а уран либо на изготовление сердечников, либо на обогащение 235U.

Переработка и регенерация высокорадиоактивных веществ — сложный и дорогостоящий процесс. ТВЭЛы после извлечения из реакторов проходят выдержку в течение нескольких лет (обычно 3—6) в специальных хранилищах. Трудности вызывает также переработка и захоронение отходов, непригодных к регенерации. Стоимость всех этих мер оказывает существенное влияние на экономическую эффективность атомных электростанций.

Примечания

  1. ↑ Изотопы: свойства, получение, применение. В 2 т. Т. 2/ Под ред. В. Ю. Баранова. - М.: Физматлит, 2005, с. 115.
  2. ↑ Харьковский физико-технический институт, Наукова думка, Киев, 1978, стр. 45.
  3. ↑ например в России БИПР-7А (разработки Курчатовского института) для ВВЭР и DINA-РБМК для РБМК (разработки НИКИЭТ имени Н. А. Доллежаля) или программа WIMS-D/4, использующаяся для расчёта некоторых европейских реакторов
  4. ↑ промышленная эксплуатация такого топлива в России насчитывает примерно 10 лет
  5. ↑ Бартоломей Г.Г., Байбаков В.Д., Алхутов М.С., Бать Г.А. Основы теории и методы расчёта ядерных энергетических реакторов. — М.: Энергоатомиздат, 1982.
  6. ↑ Т.Х.Маргулова. Атомные электрические станции. — М.: ИздАТ, 1994.
  7. ↑ Б.А.Дементьев. Кинетика и регулирование ядерных реакторов. — М.: Энергоатомиздат, 1986.
  8. ↑ Пособие по физике реактора ВВЭР-1000.—БАЭС, ЦПП, 2003
  9. ↑ Формирование урановых месторождений «типа несогласия» с богатыми рудами связывается, прежде всего, с древними (протерозойскими) рудообразующими процессами, проявленными в зонах структурно-стратиграфических несогласий (ССН). Соответственно, перспективными для обнаружения месторождений данного типа являются районы широкого развития докембрийских формаций — щиты, срединные массивы и выступы кристаллического фундамента. К таким тектоническим структурам в России относятся Балтийский щит, Воронежский кристаллический массив, Восточно-Саянский, Патомский и Алданский районы южного обрамления Сибирской платформы, Анабарский щит и Омолонский массив, примыкающая к Северному Ледовитому океану часть полуострова Таймыр и северо-восточное окончание Чукотки.
  10. ↑ англ. Yellowcake
  11. ↑ Период разгона реактора — время, за которое мощность ядерного реактора изменяется в e раз.

Литература

  • БСЭ
  • Петунин В. П. Теплоэнергетика ядерных установок М.: Атомиздат, 1960.
  • Левин В. Е. Ядерная физика и ядерные реакторы 4-е изд. — М.: Атомиздат, 1979.

org-wikipediya.ru

Обогащенный уран Википедия

Относительные пропорции урана-238 (синий) и урана-235 (красный) на разных стадиях обогащения.

Обогащение урана — технологический процесс увеличения доли изотопа 235U в уране. В результате природный уран разделяют на обогащённый уран и обеднённый уран.

В природном уране содержится три изотопа урана: 238U (массовая доля 99,2745 %), 235U (доля 0,72 %) и 234U (доля 0,0055 %). Изотоп 238U является относительно стабильным изотопом, не способным к самостоятельной цепной ядерной реакции, в отличие от редкого 235U. В настоящее время 235U является первичным делящимся материалом в цепочке технологий ядерных реакторов и ядерного оружия. Однако для многих применений доля изотопа 235U в природном уране мала и подготовка ядерного топлива обычно включает стадию обогащения урана.

Причины обогащения

Цепная ядерная реакция подразумевает что хотя бы один нейтрон из образованных распадом атома урана будет захвачен другим атомом и, соответственно, вызовет его распад. В первом приближении это означает что нейтрон должен «наткнуться» на атом 235U раньше чем покинет пределы реактора. Значит, конструкция с ураном должна быть достаточно компактной чтобы вероятность найти следующий атом урана для нейтрона была достаточно высока. Но по мере работы реактора 235U постепенно выгорает, что уменьшает вероятность встречи нейтрона и атома 235U, что вынуждает закладывать в реакторах определенный запас этой вероятности. Соответственно, низкая доля 235U в ядерном топливе вызывает необходимость в:

  • большем объёме реактора, чтобы нейтрон дольше в нём находился;
  • бóльшую долю объёма реактора должно занимать топливо, чтобы повысить вероятность столкновения нейтрона и атома урана;
  • чаще требуется перезагружать топливо на свежее, чтобы сохранять заданную объемную плотность 235U в реакторе;
  • высокой доле ценного 235U в отработавшем топливе.

В процессе совершенствования ядерных технологий были найдены экономически и технологически оптимальные решения, требующие повышения содержания 235U в топливе, то есть обогащения урана.

В ядерном оружии задача обогащения практически такая же: требуется чтобы за предельно короткое время ядерного взрыва максимальное число атомов 235U нашли свой нейтрон, распались и выделили энергию. Для этого нужна предельно возможная объемная плотность атомов 235U, достижимая при предельном обогащении.

Степени обогащения урана

Природный уран с содержанием 235U 0,72% находит применение в некоторых энергетических реакторах (например, в канадских CANDU), в реакторах-наработчиках плутония (например, А-1).

Уран с содержанием 235U до 20% называют низкообогащённым (англ. Low enriched uranium, LEU). Уран с обогащением 2...5% в настоящее время широко используется в энергетических реакторах по всему миру. Уран с обогащением до 20% используется в исследовательских и экспериментальных реакторах.

Уран с содержанием 235U свыше 20% называют высокообогащённым (англ. Highly enriched uranium, HEU) или оружейным. На заре ядерной эры были построены несколько образцов ядерного оружия пушечной схемы на основе урана с обогащением около 90%. Высокообогащённый уран может использоваться в термоядерном оружии в качестве тампера (обжимающей оболочки) термоядерного заряда. Кроме того, уран с высоким обогащением используется в энергетических ядерных реакторах с длительной топливной кампанией (то есть с редкими перезагрузками или вовсе без перезагрузки), например в реакторах космических аппаратов или корабельных реакторах.

В отвалах обогатительных производств остается обеднённый уран с содержанием 235U 0,1…0,3%. Он широко используется в качестве сердечников бронебойных снарядов артиллерийских орудий благодаря высокой плотности урана и дешевизне обеднённого урана. В будущем предполагается использование обеднённого урана в реакторах на быстрых нейтронах, где не поддерживающий цепную реакцию Уран-238 может трансмутировать в Плутоний-239, поддерживающий цепную реакцию. Полученное MOX-топливо может быть использовано в традиционных энергетических реакторах на тепловых нейтронах.

Технологии

Известно много методов разделения изотопов[1]. Большинство методов основано на разной массе атомов разных изотопов: 235-й немного легче 238-го из-за разницы в количестве нейтронов в ядре. Это проявляется в разной инерции атомов. Например, если заставить атомы двигаться по дуге, то тяжёлые будут стремиться двигаться по большему радиусу чем лёгкие. На этом принципе построены электромагнитный и аэродинамический методы. В электромагнитном методе ионы урана разгоняются в ускорителе элементарных частиц и закручиваются в магнитном поле. В аэродинамическом методе газообразное соединение урана продувается через специальное сопло-улитку. Похожий принцип в газовом центрифугировании: газообразное соединение урана помещается в центрифугу, где инерция заставляет тяжёлые молекулы концентрироваться у стенки центрифуги. Термодиффузионный и газодиффузионный методы используют разницу в подвижности молекул: молекулы газа с лёгким изотопом урана более подвижны чем тяжёлые. Поэтому они легче проникают в мелкие поры специальных мембран при газодиффузионной технологии. При термодиффузионном методе менее подвижные молекулы концентрируются в более холодной нижней части разделительной колонны, вытесняя более подвижные в верхнюю горячую часть. Большинство методов разделения работают с газообразными соединениями урана, чаще всего с UF6.

Многие из методов пытались использовать для промышленного обогащения урана, однако в настоящее время практически все мощности по обогащению работают на основе газового центрифугирования. Наряду с центрифугированием в прошлом широко использовался газодиффузионный метод. На заре ядерной эры использовались электромагнитный, термодиффузии, аэродинамический методы. На сегодняшний день центрифугирование демонстрирует наилучшие экономические параметры обогащения урана. Однако ведутся исследования перспективных методов разделения, например, лазерное разделение изотопов.

Производство обогащённого урана в мире

Работы по разделению изотопов исчисляются в специальных единицах работы разделения (ЕРР, англ. Separative work unit, SWU). Мощности заводов по разделению изотопов урана в тысячах ЕРР в год согласно WNA Market Report с прогнозом развития.

Страна Компания, завод 2012 2013 2015 2020
Россия ОАО ТВЭЛ (TENEX) 25000 26000 26578 28663
Германия, Голландия, Англия, URENCO: Gronau (Германия), Almelo (Голландия), Capenhurst (Англия) 12800 14200 14400 14900
Франция Areva: Georges Besse I и II 2500 5500 7000 7500
Китай CNNC[en], Hanzhun & Lanzhou 1500 2200 4220 7520
США URENCO: New Mexico 2000 3500 4700 4700
Пакистан, Бразилия, Иран, Индия, Аргентина Разные 100 75 100 170
Япония JNFL[en], Rokkaasho 150 75 75 75
США USEC[en]: Paducah & Piketon 5000 0 0 0
США Areva: Idaho Falls 0 0 0 0
США Global Laser Enrichment 0 0 0 0
Суммарное 49000 51550 57073 63526

См. также

Примечания

Ссылки

wikiredia.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта