Eng Ru
Отправить письмо

Список ветряных электростанций России. Вэс в россии


Ветряные электростанции в России и перспективы их развития

Развитие ветроэнергетики в России

В конце 80-х — начале 90-х годов XX века под влиянием мировой тенденции повышения цен на топливные энергетические ресурсы в ряде стран Европы (Дания, Германия, Италия, Испания), а также в США, Канаде, Китае и Индии возобновился интерес к использованию энергии ветра. Многочисленные исследования и разработки, проведенные при поддержке различных инвестиционных фондов и национальных государственных программ, дали толчок для развития новых технологий в области ветроэнергетики, что в свою очередь позволило снизить себестоимость производства ВЭУ, многократно повысить мощность ветротурбин и улучшить другие важные технико-эксплуатационные параметры оборудования.

 

Главными стимулирующими факторами для появления ветряных электростанций в России стали обострение мировых энергетических и экологических проблем и успешный положительный опыт стран-лидеров по использованию ветроэнергетического потенциала.

На начало 2010 года установленная мощность ВЭУ в России составила порядка  17-18 МВт. За последние несколько лет отечественный рынок ветроэнергетических установок ежегодно увеличивается в среднем на 15-20%. В отрасли пока отсутствуют крупные отечественные производители ветроэлектростанций средней и большой мощности, способные конкурировать с ведущими игроками на мировом рынке ВЭУ (PANASONIC, VESTAS, SUPERWIND, VERGNET, NORDEX, ECOTECNIA). Производством ветряных электростанций в России занимаются  небольшие коммерческие предприятия и ряд заводов военно-промышленного комплекса, изготавливающих ВЭУ в рамках конверсионных программ. К наиболее известным российским производителям ветряных электростанций относятся: ООО «Ветро Свет», ООО “Сапсан-Энергия”, “ЛМВ Ветроэнергетика”, ООО “СКБ Искра”, ЗАО “Ветроэнергетическая компания”, OOO “ГРЦ-Вертикаль”, ООО «Стройинжсервис», ЗАО “Агрегат-Привод”, НПП» Энерго-Экологические Системы «, ООО «ЕвроСтандартСервис» и R-Engineering (бренд RKraft).

Использование ветроэнергетических установок в России

Срок окупаемости ветряков одинаковой мощности в различных регионах РФ варьируется от 7,5 до 15 лет. Во-первых, из-за различий среднегодовой скорости ветра, во-вторых, из-за разницы в тарифах на электрическую энергию и стоимости подведения централизованного энергоснабжения. С экономической точки зрения наиболее перспективными регионами для установки ветряных электростанций в России являютсяДальний Восток, Северный экономический район, Западная и Восточная Сибирь. Зона Приморья, для которой характерны стабильные и сильные ветра, также относится к районам с высоким потенциалом развития ветроэнергетики.

Подавляющее большинство ветроэнергетических установок в России устанавливается в районах, где наряду с высокой среднегодовой скоростью ветра (не менее 5 м/с) себестоимость 1 кВт ветряной энергии является ниже, чем электроэнергия от централизованных источников энергоснабжения. Также ВЭУ успешно конкурируют с дизельными электрогенераторами и используются для энергоснабжения объектов, удаленных от централизованных электрических сетей.

greenvolt.ru

Список ветряных электростанций России — WiKi

№НазваниеУстановленнаямощность, МВтРегионОжидаемый год вводаСобственникИсточник
1 Пилотная ВЭС 460 Краснодарский край 2019—2020 ВетроОГК ✓[14]
2Ветропарки 1 — 8 300 Ростовская область 2018—2020 Фортум✓[17]
3Ветропарки 13 — 18 236 Ульяновская область 2020—2021 Фортум✓[17]
4Пилотная и Береговая ВЭС 220 Краснодарский край 2020—2022 ВетроОГК
✓[17]
5Мурманская ВЭС-21 200,97 Мурманская область 2021 Энел Россия✓[17]
6Ветропарки 9, 10, 21, 22 150 Краснодарский край 2020—2021 Фортум✓[17]
7Ветропарки 25 — 28 150 Мурманская область 2022 Фортум✓[17]
8 Шовгеновская ВЭС 150 Республика Адыгея 2018 ВетроОГК ✓[14]
9Ветропарки 23, 24 100 Татарстан 2022 Фортум✓[17]
10ВЭС 100 Адыгея 2020—2022 ВетроОГК✓[17]
11ВЭС Азов-5 90,09 Ростовская область 2020 Энел Россия✓[17]
12Ветропарки 19, 20 64 Ставропольский край 2020 Фортум✓[17]
13 Приютненская ВЭС 51 Республика Калмыкия 2015—2016 ООО «АЛТЭН» ✓[15]
14Курганская ВЭС 40 Курганская область 2022 ВетроОГК✓[17]
15 ВЭС Карсун 15 Ульяновская область 2017 ООО «КомплексИндустрия» ✓[16]
16 ВЭС Новая Майна 15 Ульяновская область 2017 ООО «КомплексИндустрия» ✓[16]
17 ВЭС Фунтово 15 Астраханская область 2017 ООО «КомплексИндустрия» ✓[16]
18 Новосергиевская ВЭС 15 Оренбургская область 2017 ООО «КомплексИндустрия» ✓[16][4]
19 Аксарайская ВЭС 15 Астраханская область 2016 ООО «КомплексИндустрия» ✓[16]
20 ВЭС Аэропорт 15 Оренбургская область 2017 ООО «КомплексИндустрия» ✓[16][4]
21 ВЭС Ишеевка 15 Ульяновская область 2017 ООО «КомплексИндустрия» ✓[16]

ru-wiki.org

Шельфовая

Шельфовые ветряные электростанции строят в море: 10—60 километров от берега. Шельфовые ветряные электростанции обладают рядом преимуществ:

  • их практически не видно с берега;

  • они не занимают землю;

  • они имеют большую эффективность из-за регулярных морских ветров.

Шельфовые электростанции строят на участках моря с небольшой глубиной. Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров. Электроэнергия передаётся на землю по подводным кабелям.

Шельфовые электростанции более дороги в строительстве, чем их наземные аналоги. Для генераторов требуются более высокие башни и более массивные фундаменты. Солёная морская вода может приводить к коррозии металлических конструкций.

В конце 2008 года во всём мире суммарные мощности шельфовых электростанций составили 1471 МВт. За 2008 год во всём мире было построен 357 МВт шельфовых мощностей. Крупнейшей шельфовой станцией является электростанция Миддельгрюнден (Дания) с установленной мощностью 40 МВт.

Для строительства и обслуживания подобных электростанций используются самоподъёмные суда.

    1. Плавающая

Строительство первой плавающей электростанции. Норвегия. Май 2009 года.

Первый прототип плавающей ветряной турбины построен компанией H Technologies BV в декабре 2007 года. Ветрогенератор мощностью 80 кВт установлен на плавающей платформе в 10,6 морских милях от берега Южной Италии на участке моря глубиной 108 метров.

Норвежская компания StatoilHydro разработала плавающие ветрогенераторы для морских станций большой глубины. StatoilHydro построила демонстрационную версию мощностью 2,3 МВт в сентябре 2009 года. Турбина под названием Hywind весит 5 300 тонн при высоте 65 метров. Располагается она в 10 километрах от острова Кармой, неподалёку от юго-западного берега Норвегии.

Стальная башня этого ветрогенератора уходит под воду на глубину 100 метров. Над водой башня возвышается на 65 метров. Диаметр ротора составляет 82,4 м. Для стабилизации башни ветрогенератора и погружения его на заданную глубину в нижней его части размещён балласт (гравий и камни). При этом от дрейфа башню удерживают три троса с якорями, закреплёнными на дне. Электроэнергия передаётся на берег по подводному кабелю.

Компания планирует в будущем довести мощность турбины до 5 МВт, а диаметр ротора — до 120 метров.

  1. Вэс в России

В середине 1920-х годов ЦАГИ разрабатывал ветро-электрические станции и ветряки для сельского хозяйства. Конструкция «крестьянского ветряка» могла быть изготовлена на месте из доступных материалов. Его мощность варьировалась от 3 л.с., 8 л.с. до 45 л.с. Такая установка могла освещать 150 — 200 дворов или приводить в действие мельницу. Для постоянства работы был предусмотрен гидравлический аккумулятор.

Технический потенциал ветровой энергии России оценивается свыше 50 000 миллиардов кВт·ч/год. Экономический потенциал составляет примерно 260 млрд кВт·ч/год, то есть около 30 процентов производства электроэнергии всеми электростанциями России.

Энергетические ветровые зоны в России расположены, в основном, на побережье и островах Северного Ледовитого океана от Кольского полуострова до Камчатки, в районах Нижней и Средней Волги и Дона, побережье Каспийского, Охотского, Баренцева, Балтийского, Черного и Азовского морей. Отдельные ветровые зоны расположены в Карелии, на Алтае, в Туве, на Байкале.

Максимальная средняя скорость ветра в этих районах приходится на осенне-зимний период — период наибольшей потребности в электроэнергии и тепле. Около 30 % экономического потенциала ветроэнергетики сосредоточено на Дальнем Востоке, 14 % — в Северном экономическом районе, около 16 % —

Успешным примером реализации возможностей ветряных установок в сложных климатических условиях является ветродизельная электростанция на мысе Сеть-Наволок Кольского полуострова мощностью до 0,1 МВт. В 17 километрах от неё в 2009 году начато обследование параметров будущей ВЭС работающей в комплексе с Кислогубской ПЭС.

На 2008 год общая мощность ВЭС в стране исчислялась 16,5 МВт. Одна из крупнейших ветровых станций России — Куликовская ВЭС, расположенная в районе посёлка Куликово Зеленоградского района Калининградской области. Её суммарная мощность составляет 5,1 МВт. Состоит из ВЭУ датской компании SЕАS Energi Service A.S. (1 новая мощностью 600 кВт и 20 отработавших 8 лет в Дании мощностью 225 кВт каждая).

На Чукотке действует Анадырская ВЭС мощностью 2,5 МВт (10 ветроагрегатов по 250 кВт) среднегодовой выработкой более 3 млн кВт·ч, параллельно станции установлен ДВС, вырабатывающий 30 % энергии установки.

Действует ветропарк в Башкирии, около деревни Тюпкильды Туймазинского района мощностью 2,2 МВт, состоящий из четырёх ветроагрегатов немецкой фирмы Hanseatische AG типа ЕТ 550/41 мощностью по 550 кВт. Cреднегодовая выработка электроэнергии составляет около 2 млн кВт·ч.

Заполярная ВЭС, находящаяся около города Воркута в Коми, имеет мощность 1,5 МВт, построена в 1993 году. Состоит из шести установок АВЭ-250 российско-украинского производства мощностью 250 кВт каждая.

В Калмыкии в 20 км от Элисты размещена площадка Калмыцкой ВЭС планировавшейся мощностью в 22 МВт и годовой выработкой 53 млн кВт·ч, на 2006 год на площадке установлена одна установка «Радуга» мощностью 1 МВт и выработкой от 3 до 5 млн кВт·ч.

Как пример реализации потенциала территорий Азовского моря можно указать Новоазовскую ВЭС, действующей на 2010 год мощностью в 21,8 МВт, установленную на украинском побережье Таганрогского залива.

На Командорских островах возведены две ветротурбины по 250 кВт.

В Мурманске вошла в строй ветроустановка мощностью 200 кВт.

Существуют проекты на разных стадиях проработки Ленинградской ВЭС 75 МВт Ленинградская область, Ейской ВЭС 72 МВт Краснодарский край, Калининградской морской ВЭС 50 МВт, Морской ВЭС 30 МВт Карелия, Приморской ВЭС 30 МВт Приморский край, Магаданской ВЭС 30 МВт Магаданская область, Чуйской ВЭС 24 МВт Республика Алтай, Усть-Камчатской ВДЭС 16 МВт Камчатская область, Новиковской ВДЭС 10 МВт Республика Коми, Дагестанской ВЭС 6 МВт Дагестан, Анапской ВЭС 5 МВт Краснодарский край, Новороссийской ВЭС 5 МВт Краснодарский край и Валаамской ВЭС 4 МВт Карелия.

Ветряной насос «Ромашка» производства СССР

В 2003—2005 годах в рамках РАО ЕЭС проведены эксперименты по созданию комплексов на базе ветрогенераторов и двигателей внутреннего сгорания, по программе в посёлке Тикси установлен один агрегат. Все проекты начатые в РАО, связанные с ветроэнергетикой переданы компании РусГидро. В конце 2008 года РусГидро начала поиск перспективных площадок для строительства ветряных электростанций.

Предпринимались попытки серийного выпуска ветроэнергетических установок для индивидуальных потребителей, например водоподъёмный агрегат «Ромашка».

В последние годы увеличение мощностей происходит в основном за счет маломощных индивидуальных энергосистем, объем реализации которых составляет 250 ветроэнергетических установок (мощностью от 1 кВт до 5 кВт).

studfiles.net

Ветряные электростанции России

Навеяно постом про новую ветровую электростанцию в Великобритании.Начала работу морская ветряная ферма с самыми мощными турбинами в мире. 32 турбины, по 8 Мегаватт=256 Мегаватт. Неплохо. Альтернативная энергетика развивается, и это хорошо. Давайте посмотрим, что есть в России по ветрякам. Суммарная установленная электрическая мощность ветряных электростанций ЕЭС России на 1 июля 2016 года составляет 10,9 МВт или всего 0,01% от установленной мощности электростанций энергосистемы. Это очень мало, и зелёная братия со зловещим ликованием машет этой цифрой, мол смотрите, как слабо в РФ развита зелёная энергетика. Однако у этой цифры есть техническая причина. Это лишь та электроэнергия, которая поступает в общую российскую энергосистему. Если ветряная электростанция работает на какой-то город или населённый пункт, она в эту статистику не попадает и носит название изолированной энергосистемы, то есть для локальных нужд. Вот электростанции, которые попали в статистику (не изолированные).Ветряные электростанции России А вот электростанции изолированные. В общую статистику не идут, но работают.Ветряные электростанции России Если поскладывать мощности, получается 95 Мегаватт. К ним добавим не-изолированные, получим 105 Мегаватт. Это уже лучше, но всё равно хочется больше. Поэтому смотрим проектируемые и строящиеся ветровые электростанции.Ветряные электростанции России Хочется пожелать этой индустрии добра и попутного ветра. А вот ещё несколько новостей на эту тему.Ветряные электростанции России Ещё статья:В России к 2030г планируется построить 13 ГЭС и 15 ВЭС Выдержка оттуда: в 2017 году в Адыгее планируется ввести в эксплуатацию Шовгеновский ветропарк (144 МВт), в 2019 году — Гиагинский ветропарк (195 МВт) и Кошехабльский ветропарк (102 МВт). В 2018 году предполагается запустить Оренбургскую ВЭС (150 МВт).

Планируется, что в 2020 году в Мурманской области будет введена в эксплуатацию Кольская ВЭС (100 МВт), до 2025 года — ветропарк поселка Лодейное (300 МВт). До 2030 года будут введены в эксплуатацию Калининградская ВЭС (200 МВт), ВЭС в Усть-Луге (300 МВт), Нижегородская ВЭС (350 МВт), ветропарк «Средняя Волга» (1 ГВт)!!! в Саратовской области, Астраханская ВЭС (100 МВт), Приютненская ВЭС (150 МВт) в республике Калмыкия, Краснодарский ветропарк (1 ГВт)!!!, Карачаево-Черкесская ВЭС (300 МВт), Омский ветропарк (110 МВт).

П.С. Кстати, гидроэлектростанции тоже считаются возобновляемой зелёной энергетикой. Доля возобновляемых источников электроэнергии в 2015 (гидро, солнце, ветер):Россия:16,3%США: 13,8%Великобритания: 26,3% Мировой лидер — Норвегия — 97%, опять же за счёт гидро. Цифры взял отсюда. Там красивая карта кому интересно.

Напоследок фотки из Крыма. Солнечная электростанция Перово (Симферопольский район). Всего по Крыму мощность пяти солнечных электростанций составляет 297 МВт.Ветряные электростанции России Ветряная электростанция Мирное (Сакский район)Ветряные электростанции России Ветряки в Восточном Крыму.Ветряные электростанции России Всем хорошего настроения!

smart-lab.ru

Список ветряных электростанций России — ВиКи

№НазваниеУстановленнаямощность, МВтРегионОжидаемый год вводаСобственникИсточник
1 Пилотная ВЭС 460 Краснодарский край 2019—2020 ВетроОГК ✓[14]
2Ветропарки 1 — 8 300 Ростовская область 2018—2020 Фортум✓[17]
3Ветропарки 13 — 18 236 Ульяновская область 2020—2021 Фортум✓[17]
4Пилотная и Береговая ВЭС 220 Краснодарский край 2020—2022 ВетроОГК✓[17]
5Мурманская ВЭС-21 200,97 Мурманская область 2021 Энел Россия✓[17]
6Ветропарки 9, 10, 21, 22 150 Краснодарский край 2020—2021 Фортум✓[17]
7Ветропарки 25 — 28 150 Мурманская область 2022 Фортум✓[17]
8 Шовгеновская ВЭС 150 Республика Адыгея 2018 ВетроОГК ✓[14]
9Ветропарки 23, 24 100 Татарстан 2022 Фортум✓[17]
10ВЭС 100 Адыгея 2020—2022 ВетроОГК✓[17]
11ВЭС Азов-5 90,09 Ростовская область 2020 Энел Россия✓[17]
12Ветропарки 19, 20 64 Ставропольский край 2020 Фортум✓[17]
13 Приютненская ВЭС 51 Республика Калмыкия 2015—2016 ООО «АЛТЭН» ✓[15]
14Курганская ВЭС 40 Курганская область 2022 ВетроОГК✓[17]
15 ВЭС Карсун 15 Ульяновская область 2017 ООО «КомплексИндустрия» ✓[16]
16 ВЭС Новая Майна 15 Ульяновская область 2017 ООО «КомплексИндустрия» ✓[16]
17 ВЭС Фунтово 15 Астраханская область 2017 ООО «КомплексИндустрия» ✓[16]
18 Новосергиевская ВЭС 15 Оренбургская область 2017 ООО «КомплексИндустрия» ✓[16][4]
19 Аксарайская ВЭС 15 Астраханская область 2016 ООО «КомплексИндустрия» ✓[16]
20 ВЭС Аэропорт 15 Оренбургская область 2017 ООО «КомплексИндустрия» ✓[16][4]
21 ВЭС Ишеевка 15 Ульяновская область 2017 ООО «КомплексИндустрия» ✓[16]

xn--b1aeclack5b4j.xn--j1aef.xn--p1ai

Ветроэнергетика в России

Ветроэнергетика в России

Энергия ветра — это преобразованная энергия солнечного излучения, и пока светит Солнце, будут дуть и ветры. Таким образом, ветер — это тоже возобновляемый источник энергии.

Люди используют энергию ветра с незапамятных времен — достаточно вспомнить парусный флот, который был уже у древних финикян и живших одновременно с ними других народов, и ветряные мельницы. В принципе, преобразовать энергию ветра в электрический ток, казалось бы, нетрудно — для этого достаточно заменить мельничный жернов электрогенератором. Ветры дуют везде, они могут дуть и летом, и зимой, и днем, и ночью — в этом их существенное преимущество перед самим солнечным излучением. Поэтому вполне п9нятны многочисленные попытки "запрячь ветер в упряжку" и заставить его вырабатывать электрический ток.

Первая в нашей стране ветровая электростанция мощностью 8 кВт была сооружена в 1929-1930 гг. под Курском по проекту инженеров А.Г.Уфимцева и В.П.Ветчинкина. Через год в Крыму была построена более крупная ВЭС мощностью 100 кВт, которая была по тем временам самой крупной ВЭС в мире. Она успешно проработала до 1942 г., но во время войны была разрушена. В настоящее время в СССР выпускаются серийные ветроагрегаты мощностью 4 и 30 кВт и готовятся к выпуску более мощные установки 100 и даже 1000 кВт. Делаются первые шаги по пути перехода от единичных автономных ВЭС к системам связанных в единую сеть многих ветроагрегатов большой мощности. Первая такая система должна быть сооружена около поселка Дубки в Дагестане.

Значительные успехи в создании ВЭС были достигнуты за рубежом. Во многих странах Западной Европы построено довольно много установок по 100-200 кВт. Во Франции, Дании и в некоторых других странах были введены в строй ВЭС с номинальными мощностями свыше 1 МВт

Ветроэнергетические установки (ВЭУ) достигли сегодня уровня коммерческой зрелости и в местах с благоприятными скоростями ветра могут конкурировать с традиционными источниками электроснабжения. Из всевозможных устройств, преобразующих энергию ветра в механическую работу, в подавляющем большинстве случаев используются лопастные машины с горизонтальным валом, устанавливаемым по направлению ветра. Намного реже применяются устройства с вертикальным валом.

Кинетическая энергия, переносимая потоком ветра в единицу времени через площадь в 1 м2 (удельная мощность потока), пропорциональна кубу скорости ветра. Поэтому установка ВЭУ оказывается целесообразной только в местах, где среднегодовые скорости ветра достаточно велики.

Ветровое колесо, размещенное в свободном потоке воздуха, может в лучшем случае теоретически преобразовать в мощность на его валу 16/27=0,59 (критерий Бетца) мощности потока воздуха, проходящего через площадь сечения, ометаемого ветровым колесом. Этот коэффициент можно назвать теоретическим КПД идеального ветрового колеса. В действительности КПД ниже и достигает для лучших ветровых колес примерно 0,45. Это означает, например, что ветровое колесо с длиной лопасти 10 м при скорости ветра 10 м/с может иметь мощность на валу в лучшем случае 85 кВт.

Наибольшее распространение из установок, подсоединяемых к сети, сегодня получили ветроэнергетические установки (ВЭУ) с единичной мощностью от 100 до 500 кВт. Удельная стоимость ВЭУ мощностью 500 кВт составляет сегодня около 1200 долл/кВт и имеет тенденцию к снижению.

Наряду с этим создаются ВЭУ и с существенно большей единичной мощностью. В 1978 г. в США была создана первая экспериментальная ВЭУ мегаваттного класса с расчетной мощностью 2 МВт. Вслед за этим в 1979-1982 гг. в США были сооружены и испытаны 5 ВЭУ с единичной мощностью 2,5 МВт. Самая большая к тому времени ВЭУ (Гровиан) мощностью 3 МВт была сооружена в Германии в 1984 г., но, к сожалению, она проработала лишь несколько сот часов. Построенные несколько позже в Швеции ВЭУ WTS-3 и WTS-4 мощностью соответственно 5 и 4 МВт были установлены в Швеции и США и проработали первая 20, а вторая 10 тыс.ч.

В Канаде ведутся работы по созданию крупных ветровых установок с вертикальным валом (ротор Дарье). Одна такая установка мощностью 4 МВт проходит испытания с 1987 г. Всего за 1987-1993 гг. в мире было сооружено около 25 ВЭУ мегаваттного класса.

Расчетная скорость ветра для больших ВЭУ обычно принимается на уровне 11-15 м/с. Вообще, как правило, чем больше мощность агрегата, тем на большую скорость ветра он рассчитывается. Однако в связи с непостоянством скорости ветра большую часть времени ВЭУ вырабатывает меньшую мощность. Считается, что если среднегодовая скорость ветра в данном месте не менее 5-7 м/с, а эквивалентное число часов в году, при котором вырабатывается номинальная мощность не менее 2000, то такое место благоприятно для установки крупной ВЭУ и даже ветровой фермы.

Автономные установки киловаттного класса, предназначенные для энергоснабжения сравнительно мелких потребителей, могут применяться и в районах с меньшими среднегодовыми скоростями ветра.

Сегодня в некоторых промышленно развитых странах установленная мощность ВЭУ достигает заметных значений. Так, в США установлено более 1,5 млн. кВт ВЭУ, в Дании ВЭУ производят около 3 °/о потребляемой страной энергии; велика установленная мощность ВЭУ в Швеции, Нидерландах, Великобритании и Германии.

По мере совершенствования оборудования ВЭУ и увеличения объема их выпуска стоимость ВЭУ, а значит и стоимость производимой ими энергии снижаются. Если в 1981 г. стоимость электроэнергии производимой ВЭУ, составляла примерно 30 американских центов за кВт./ч, то сегодня она составляет 6-8 центов. С учетом того, что только в 1995 г. в США велись работы по четырем большим ветровым фермам с общей мощностью около 200 МВт, станет ясно, что планируемое Департаментом Энергетики США снижение стоимости ветровой электроэнергии до 2,5 центов/ (кВт. ч) вполне реально [57, 90,94].

В развивающихся странах интерес к ВЭУ связан в основном с автономными установками малой мощности, которые могут использоваться в деревнях, удаленных от систем централизованного электроснабжения. Такие установки уже сегодня конкурентоспособны с дизелями, работающими на привозимом топливе. Однако в некоторых случаях непостоянство скорости ветра заставляет либо устанавливать параллельно с ВЭУ аккумуляторную батарею, либо резервировать ее установкой на органическом топливе. Естественно, это повышает стоимость установки и ее эксплуатации, поэтому распространение таких установок пока невелико.

В России существует значительный нереализованный задел в области ветроэнергетики. Фундаментальные исследования аэродинамики ветряка , осуществленные в ЦАГИ , заложили основу современных ветротурбин с высоким коэффициентом использования энергии ветра. Однако жесткая ориентация на большую гидроэнергетику и угольно-ядерную стратегию и почти полную глухоту к новациям и экологическим проблемам надолго затормозило развити ветроэнергетики. Выпускаемые “ Ветроэном” ветроустановки не отвечали современным требованиям и представлениям высоких технологий ветроэнергетической индустрии. Толчком для дальнейшего продвижения и создания современного ветроэнергетического оборудования стала федеральная научно-техническая программа “Экологически чистая энергетика”[193] . Для участия и получения финансирования были отобраны лучшие проекты ветроэнергетических установок различных классов по мощности. Были разработаны проекты ветроагрегатов мощностью до 30 кВт , 100 кВт, 250 кВт, 1250 кВт.

Начавшаяся перестройка, развал экономики и прекращение финансирования по программе не позволила довести указанные проекты до коммерческого уровня. Почти все проекты остались на уровне опытных и макетных образцов. Опытный образец ветроагрегата мегаваттного класса был спроектирован и построен МКБ “Радуга” , который организовал кооперацию предприятий авиационной промышленности. Разработка, изготовление и строительство финансировалось правительством Калмыкии. Ветроагрегат был построен недалеко от Элисты и успешно работает , вырабатывая 2300-2900 тыс. кВт ч электроэнергии в год. Ветроагрегат подключен к сети. В МКБ “ Радуга” были спроектированы ветроагрегаты мощностью 8кВт и 250 кВт. Российской Ассоциацией развития ветроэнергетики “ Energobalance Sovena” совместно с Германской фирмой Husumer SchiffsWert (HSW) были изготовлены 10 ветроагрегатов сетевого исполнения единичной мощностью 30 кВт. Ветропарк с установленной мощностью 300 кВт был построен в 1996 г. в Ростовской области и запущен в эксплуатацию.

Сегодня возможны следующие сценарии развития ветроэнергетики в России:

закупка и монтаж зарубежных ветроагрегатов;

трансферт западных технологий и организация производства в России ;

кооперация с зарубежными фирмами и производство ветроагегатов в России ;

организация производства собственных ветроагегатов, ноу-хау которых защищено международным законодательством .

Для России предпочтительней последний сценарий, однако он сдерживается существующим налоговым законодательством, монополией производителей электроэнергии, отсутствием инвестиций и развалом производства.

Фундаментальные знания в области ветроэнергетики

На примере совершенствования модели ветра можно показать что углубление знаний в этой области позволило приблизиться к адекватной модели преобразования энергии На рис. показаны: использование упрощенной модели ветра с осредненными параметрами по времени и в пространстве до 70 годов, учет изменения скорости ветра по высоте в 75 годы, использование турбулентной модели ветра в 85 годы.

Минусы ветроэнергетики

Ветер дует почти всегда неравномерно. Значит, и, генератор будет работать неравномерно, отдавая то большую, то меньшую мощность, ток будет вырабатываться переменной частотой, а то и полностью прекратится, и притом, возможно, как раз тогда, когда потребность в нем будет наибольшей. итоге любой ветроагрегат работает на максимальной мощности лип малую часть времени, а в остальное время он либо работает на пониженной мощности, либо просто стоит.

mirznanii.com

Ветроэнергетика в России,развитие технологии в ветроэнергетике

В России существует значительный нереализованный задел в области ветроэнергетики. Фундаментальные исследования аэродинамики ветряка , осуществленные в , заложили основу современных ветротурбин с высоким коэффициентом использования энергии ветра. Однако жесткая ориентация на большую гидроэнергетику и угольно-ядерную стратегию и почти полную глухоту к новациям и экологическим проблемам надолго затормозило развитие ветроэнергетики.Выпускаемые “ Ветроэном” ветроустановки не отвечали современным требованиям и представлениям высоких технологий ветроэнергетической индустрии. Толчком для дальнейшего продвижения и создания современного ветроэнергетического оборудования стала федеральная научно-техническая программа “Экологически чистая энергетика«. Для участия и получения финансирования были отобраны лучшие разработки ветроэнергетичесих установок различных классов по мощности. Были разработаны проекты ветроагрегатов мощностью до 30 , 100 ,250 , 1250 кВт. Начавшаяся перестройка, развал экономики и прекращение финансирования по программе не позволила довести указанные проекты до коммерческого уровня. Почти все разработки остались на уровне опытных и макетных образцов. Опытный образец ветроагрегата мегаваттного класса был спроектирован и построен МКБ “Радуга” , который организовал кооперацию предприятий авиационной промышленности. Разработка, изготовление и строительство финансировалось правительством Калмыкии. Ветроагрегат был построен недалеко от Элисты и успешно работает , вырабатывая 2300-2900 тыс. кВт\ч электроэенергии в год. Ветроагрегат подключен к сети. В МКБ “ Радуга” были спроектированы ветроагрегаты мощностью 8 и 250 кВт. Российской Ассоциацией развития ветроэнергетики “ Energobalance Sovena” совместно с Германской фирмой Husumer SchiffsWert (HSW) были изготовлены 10 ветряков сетевого исполнения единичной мощ. 30 кВт. Ветропарк с установленной мощ. 300 кВт был построен в 1996 г. в Ростовской области и запущен в эксплуатацию.

Сегодня возможны следующие сценарии развития ветроэнергетики в России:

  • закупка и монтаж зарубежных ветроагрегатов;
  • трансферт западных технологий и организация производства в России ;
  • кооперация с зарубежными фирмами и производство ветроагегатов в России ;
  • организация производства собственных ветроагегатов, ноу-хау которых защищено международным законодательством .

Для России предпочтительней последний сценарий, однако он сдерживается существующим налоговым законодательством, монополией производителей электроэнергии, отсутствием инвестиций и развалом производства.

Ветроэнергетика (wind power) — отрасль альтернативной энергетики, связанная с разработкой методов и средств преобразования энергии ветра в механическую, тепловую или электрическую энергию.Ветроэнергетике присущи все преимущества, характерные для альтернативной энергетики в целом — экологическая чистота, возобновляемость, низкие эксплуатационные затраты.

К недостаткам ветроэнергетики относят:

* шум — минимальное допустимое расстояние от ветроустановки до жилых домов — 300 м* визуальное воздействие ветрогенераторов — является скорее субъективным и легко разрешаемым фактором, сейчас для улучшения эстетического вида ветряков во многих крупных фирмах работают профессиональные дизайнеры* занятие больших земельных участков — также является спорным недостатком, фундамент ветроустановки обычно полностью находится под землей, позволяя расширить сельскохозяйственное использование земли практически до самого основания башни

Для преобразования энергии ветра в другие виды энергии — механическую, тепловую, электрическую и др., используют ветроэнергетические установки (wind power plant).

В настоящее время применяются две основные конструкции ветроэнергетических установок (ВЭУ): горизонтально осевые и вертикально осевые ветродвигатели. Оба типа ветроэнергетических установок имеют примерно равный КПД, однако наибольшее распространение получили ветроагрегаты первого типа. Мощность ветроэнергетической установки может быть от сотен ватт до нескольких мегаватт.[adsense_id=»1″]Ветроэлектростанция (wind electrical power station) — электростанция, состоящая из двух и более ветроэлектрических установок, предназначенная для преобразования энергии ветра в электрическую энергию и передачу ее потребителю.

Ветроагрегат (wind unit) — система, состоящая из ветродвигателя, системы передачи мощности и приводимой ими в движение машины — электромашинного генератора, насоса, компрессора и т.п.

Гибридные ветроэнергетические установки (combine wind systems) — системы, состоящие из ветроэнергетической установки и какого либо другого источника энергии (дизельного, бензинового, газотурбинного двигателей, фотоэлектрических, солнечных коллекторов, установок емкостного, водородного аккумулирования сжатого воздуха и т.п.), используемых в качестве резервного или дополнительного источника электроснабжения потребителей.

Ветропарк — это комплекс ветроэнергетических установок, часто установленных рядами, которые перпендикулярны господствующему направлению ветра. При разработке такого проекта нужно учитывать наличие дорог для доступа к ветроагрегатам, подстанции и мониторинговой и контрольной системам.

Классификация ветроэнергетических установок по назначению — ГОСТ Р 51990-2002 «Нетрадиционная энергетика. Ветроэнергетика. Установки ветроэнергетические. Классификация»Наименование Мощность Признак НазначениеСистемные, сетевые 200 кВт-5 МВт Работа ВЭУ параллельно с мощной электрической сетью Источники получения и выдачи в электрическую сеть максимально возможной выработанной электроэнергииАвтономные 50-500 кВт Работа ВЭУ индивидуально (автономно) Источники электропитания потребителей, не связанные электрической сетью, отличающиеся сравнительно низкими значениями коэффициента использования установленной мощностиГибридные — Работа ВЭУ параллельно с независимыми электро-станциями соизмеримой мощности (дизель-генераторы, малые ГЭС и др.) Источники электропитания для бесперебойного снабжения потребителей электроэнергией номинальной мощности

ВЕТРОЭНЕРГЕТИКА – мировой рынок

Альтернативная энергетика в общем и ветроэнергетика в частности демонстрируют бурное развитие во всем мире. Это связано с ростом цен на нефть, текущими проблемами энергетической безопасности и озабоченностью все большего числа людей проблемой изменения климата.

По состоянию на конец 2009 года было установлено около 152 ГВт ветроэнергетических установок (+30,3 ГВт или +25%). Таким образом, ветроэнергетика на протяжении последних лет продолжает оставаться крупнейшим сегментом рынка альтернативной энергетики.

В среднем в мире 1,5% потребляемой электроэнергии вырабатывается с использованием ветроэнергетических установок. В странах, где правительство оказывает поддержку ветропаркам, доля ветроэнергетики выше, например, в Дании при помощи ветра получают свыше 20% электроэнергии, в Испании — 10%, Германии — 8%.

Более половины всех мировых ветроэнергетических мощностей в настоящее время сосредоточено в Европе. Лидерами по темпам наращивания ветроэнергетических мощностей являются Северная Америка, Европа и Азия.

Сценарии развития мировой ветроэнергетики, разработанные специалистами, показывают, что при отсутствии государственной поддержки и рыночных стимулов, доля ветроэнергетики в мировом производстве электроэнергии может достичь 5% к 2030 году и 6,6% к 2050 году. При господдержке энергосбережения, ветроэнергетика может обеспечить 15.6% мирового производства электроэнергии к 2030 году и 17,7% к 2050 году. При масштабных энергосберегающих мероприятиях, ветроэнергетика обеспечивает 29,1% мирового производства электроэнергии к 2030 году и 34,2% — к 2050 году.

Таким образом, доля ветровой энергетики в системе энергоснабжения может быть значительно увеличена за счет реализации масштабных мероприятий в области энергосбережения.

Например, правительством Канады установлена цель к 2015 году производить 10% электроэнергии с использованием ветроэнергетических установок. Европейский Союз планирует к 2010 году установить 40 тыс. МВт ветрогенераторов, а к 2020 году — 180 тыс. МВт. В Китае, в соответствии с Национальным Планом Развития ветроэнергетики, планируется увеличить ветроэнергетические мощности до 5 тыс. МВт к 2010 году и до 30 тыс. МВт к 2020 г.

На фоне того, как большинство стран мира обратило свое внимание на развитие альтернативной энергетики, Россия, напротив, продолжает наращивать темпы добычи и экспорта традиционного топлива. В структуре топливно-энергетического баланса страны ведущая роль принадлежит таким энергоресурсам, как газ и нефть — 53% и 18.9% совокупного потребления энергии соответственно. Кроме того, около 18% энергобаланса приходится на долю твердого топлива.

[like_to_read]

Из 1066,7 млрд. кВтч выработанной электроэнергии в 2009 году:

* более 68% произведено тепловыми станциями* около 15,5% гидроэлектростанциями* около 17% атомными станциями

С использованием возобновляемых источников энергии в России ежегодно вырабатывается не более 8,5 млрд. кВтч электрической энергии, без учета гидроэлектростанций установленной мощностью более 25 МВт, что составляет менее 1% совокупного объема.

За несколько лет до финансового кризиса в России стала создаваться нормативно правовая база развития рынка ветроэнергетических установок. Первым шагом в вопросе законодательного регулирования отрасли стало принятие в конце 2007 года поправок к Федеральному закону «Об электроэнергетике», заложивших рамочные основы развития отрасли. Это событие способствовало как формированию институциональных условий функционирования рынка, так и повышению инвестиционной привлекательности отрасли.Структура рынка альтернативной энергетики в России

К числу основных направлений государственной политики в сфере повышения энергоэффективности было отнесено развитие производства электрической энергии на основе:

* малых гидроэлектростанций, установленной мощностью менее 25 МВт* генерирующих установок на основе солнечной энергии* генерирующих установок на основе энергии ветра* генерирующих установок на основе геотермальной энергии природных подземных теплоносителей* генерирующих установок на основе низкопотенциальной тепловой энергии земли, воздуха, воды, включая сточные воды* генерирующих установок на основе биомассы и биогаза

Для достижения объема потребления ветроэнергетических установок планируется ввод в период с 2010 по 2020 годы генерирующих объектов (малых ГЭС, ветроэлектрических станций, приливных электростанций, геотермальных электростанций, тепловых электростанций на биомассе и прочих видов электроустановок) с суммарной установленной мощностью до 25 ГВт.

Таким образом, объем выработки электроэнергии на основе ветроэнергетических установок к 2020 году должен составить около 80 млрд. кВтч.[adsense_id=»1″]Суммарная мощность всех ветроэнергетических установок России составила в 2009 году только 17-18 МВт (столько в мире устанавливается за 6 часов) или 0,008% от электрогенерирующих мощностей РФ (220 ГВт).

По экспертным оценкам, технический потенциал (под потенциалом отрасли нами понимается средний годовой объем энергии, содержащийся в данном виде энергоресурса при полном ее превращении в полезно используемую энергию) ветровой энергии России оценивается свыше 6000 млрд. кВтч/год. Экономический потенциал составляет примерно 31 млрд. кВтч/год. Россия — одна из самых богатых в этом отношении стран — самая длинная на Земле береговая линия, обилие ровных безлесных пространств, большие акватории внутренних рек, озер и морей — все это наиболее благоприятные места для размещения ветропарков.

Важность развития ветроэнергетики в нашей стране определяется тем, что 70% территории России, где проживает 10% населения, находится в зоне децентрализованного энергоснабжения, которая практически совпадают с зоной потенциальных ветроресурсов (Камчатка, Магаданская область, Чукотка, Сахалин, Якутия, Бурятия, Таймыр и др.).

Внедрение новых ветроэнергетических мощностей происходит в России достаточно медленными темпами: на конец 2005 года их было — 14 МВт, 2006 — 15,5 МВт, 2007 — 16,5 МВт. В среднем темпы прироста составляют 8% в год — это один из самых низких показателей в мире, в Китае, для сравнения, он составляет ~ 60%, США ~ 30%, Испании ~ 20%.

К настоящему моменту в России представлено около 10 крупных ветропарков, на долю которых приходится около 90% суммарной мощности. Кроме того функционирует около 1600 малых ветроэнергетических установок, мощностью от 0,1 до 30 кВт.

Стоит отметить, что установка практически всех ветропарков относится к 2002-2003 годам. В последние же годы, увеличение мощностей происходит в основном за счет маломощных индивидуальных энергосистем, прирост составил 250 ветроэнергетических установок мощностью от 1 кВт до 5 кВт.

На рынке ветроэнергетики работают свыше 50 участников, половину из которых можно отнести к производителям. Практически все производители изготавливают свою продукцию на основании собственных разработок. Менее 1% изготавливают ветроэнергетические установки на основе трансферта зарубежных технологий.

Согласно государственным планам, в дальнейшем ветроэнергетика должна развиваться быстрыми темпами. Предполагается за три года увеличить объем введенных мощностей в 15,5 раз. Это достаточно сложная задача, учитывая нынешнюю динамику развития.

По оценкам ResearchTechart, при оптимистичном сценарии при условии государственной поддержки и стимулирования развития ветроэнергетики к 2011 году в России будет около 120 МВт установленной мощности.

Понравилось это:

Нравится Загрузка...

vetrodvig.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта