Eng Ru
Отправить письмо

Большая Энциклопедия Нефти и Газа. Температура кипения алюминий


Температура - плавление - алюминий

Температура - плавление - алюминий

Cтраница 1

Температура плавления алюминия составляет 660 4 С, температура кипения около 2500 С.  [1]

Температура плавления алюминия колеблется в зависимости от его чистоты в границах между 657 и 660 С, а температура кипения 1800 - 2000 С.  [2]

Температура плавления алюминия - 660 С, однако для достижения оптимальных условий плавления необходима t 700 - 760 С. Но лак удаляется и при более низких ( - 590 С) температурах. Определяющим является процесс плавки. Следует отметить, что можно снимать лак, нанося лом на поверхность солевого расплава с температурой - 590 С.  [4]

Температура плавления алюминия равна 658 С, а разливки около 700 - 750 С. Особенностями алюминия являются его легкая окисляемость при высоких температурах и малая плотность 2 5 - 103 кг / м3 в расплавленном состоянии.  [5]

Температура плавления алюминия составляет 565 - 578 С, а его оксидной пленки - около 2000 С.  [6]

Температура плавления алюминия очень чувствительна к чистоте металла и для высокочистого алюминия ( 99 996 %) составляет 933 4 К ( 660 3 С), а температура начала кристаллизации алюминия по Международной шкале температур ( 1968 г.) считается равной 660 37 С и используется в течение многих десятков лет для калибровки термопар.  [7]

Температура плавления алюминия значительно выше, чем свинца, поэтому заливка расплавленного алюминия в рабочий цилиндр невозможна, так как она может приводить к чрезмерному перегреву прессового инструмента и изоляции кабеля.  [8]

Температура плавления алюминия ( 658 С) значительно выше температуры плавления свинца, поэтому заливка расплавленного алюминия в рабочий цилиндр невозможна, так как она может привести к чрезмерному перегреву прессового инструмента и изоляции кабеля. Чтобы избежать перегрева, в рабочий цилиндр загружают не расплавленный алюминий, а предварительно нагретые до 430 - 530 С алюминиевые цилиндрические слитки, диаметр которых меньше внутреннего отверстия цилиндра.  [9]

Поскольку температура плавления алюминия равна 659 С, а коэффициент его расширения вдвое больше, чем у железа, эмали для алюминия должны быть легкоплавкими и иметь большой коэффициент термического расширения.  [10]

Разность температур плавления алюминия ( 659) и его окиси приводит к тому, что в расплавленной ванне алюминия пленка окислов, находящаяся в твердом состоянии, препятствует качественному сплавлению металла.  [11]

Если достигается температура плавления алюминия, реакция может протекать со взрывом. При добавлении А1С13 в СС14 индукционный период уменьшается до нуля, а скорость коррозии существенно не меняется.  [13]

Действительно, температуры плавления алюминия, золота, марганца, железа, хрома, платины равны соответственно 660, 1 063, 1 260, 1 535, 1 615, 1 773 5 С; температура же кипения хрома примерно 2200, меди 2 300, а золота 2 600 С.  [14]

Так как температура плавления алюминия равна 660, то получаемый алюминий также находится в расплавленном состоянии. При пропускании электрического тока алюминий выделяется на графитовой обкладке электролизера, а кислород - на угольных электродах. Образующийся расплавленный алюминий время от времени выпускают в формы через специальный канал А. Выделяющийся на анодах кислород окисляет угольные электроды до окиси углерода, поэтому эти электроды по мере сгорания их нижней части опускают вниз.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Свойства алюминия

Алюминий и его сплавы имеют малую плотность 2,64— 2,89 г/см3. Прочностные же свойства зависят от легирования, тер­мической обработки, степени деформирования и могут достигать высоких значений. По прочности многие алюминиевые сплавы не уступают конструкционным сталям.

Чистый алюминий (суммарное содержание примесей не более 0,05%) имеет гранецентрированную кубическую решетку с пара­метрами 4,04 А. Температура его плавления 659,8—660,2° С, температура кипения 1800—2500° С.

Для сплавов алюминия электропроводность составляет 30—50% электропроводности меди, а для чистого алюминия 62—65% электропроводности меди.

Алюминий окисляется с образованием окисной пленки Аl203, которая защищает его от дальнейшего окисления,Химический состав деформируемых и литейных алюминиевых сплавов по ГОСТам 4784—65 и 2685—63.

Из алюминиевых сплавов в основном изготовляют конструк­ции, работающие при сравнительно низких температурах не свыше 350° С. Так дуралюмин используют для работы при темпе­ратурах не более 200° С, сплавы типа В95 до 125° С, авиали до 80—100° С при длительной работе и до 200° С при кратковре­менной. Специальные сплавы САП (спеченный алюминиевый поро­шок) применяют и для работы при более высоких температурах. До температуры 100° С кратковременные механические свойства меняются мало. Обращает внимание высокое относительное удли­нение алюминиевых сплавов при низких температурах.

Характеристики длительной проч­ности термически не упрочняемых сплавов обычно ниже, чем тер­мически упрочняемых.

Длительные выдержки сплавов типа авиаль при температурах свыше 80—100° С приводят к их упрочнению и снижению пласти­ческих свойств. Исследованиями, проведенными авторами, уста­новлено, что относительное удлинение снижается при указанных условиях с 20—25% (исходное состояние после закалки и есте­ственного старения) до 1—2%. Подобное ухудшение свойств, при которых возможно хрупкое разрушение конструкций, яв­ляется существенным препятствием применения сплавов такого типа для работы при температурах выше 80° С.

Циклическая прочность 

Циклическая прочность деформируемых сплавов при симме­тричном изгибе на базе 5*108циклов составляет 3,5 кГ/мм2 для сплава А ДМ, 4,2—6,3 кГ/мм2 для сплава АДН, 5—6,5 кГ/мм2 для сплава АМцАМ, 15 кГ/мм2 для сплава В95.

Области применения литейных сплавов различны. Сплавы группы I рекомендуют для литья в песчаные формы, кокиль и для литья под давлением. Сплав АЛ22 обычно применяют в закален­ном состоянии, а сплав АЛ23 и АЛ29 — в литом. Сплавы группы II имеют высокие литейные свойства благодаря наличию в сплавах двойной эвтектики, которая уменьшает также литейную усадку и склонность к образованию горячих трещин. Сплавы AЛ2, АЛ4 и АЛ9 обладают повышенной коррозионной стойкостью, поэтому их применяют для изделий, работающих во влажной и морской средах. С целью получения заданных механических свойств отливки подвергают термической обработке по различ­ным режимам.

Сплавы группы III обладают высокими механи­ческими свойствами, особенно пределом текучести и повышенной жаропрочностью. У этих сплавов пониженные литейные свойства и коррозионная стойкость, кроме того, они склонны к образова­нию горячих трещин. Для выполнения отливок сложной формы такие сплавы не рекомендуют. Сплав АЛ7 применяют для деталей, испытывающих средние нагрузки и температуры не свыше 200° С. Сплав АЛ 19 по сравнению с АЛ 17 имеет более высокую жаропроч­ность (в 2 раза), и применяют его для силовых деталей в условиях статических и ударных нагрузок при температурах до 300° С.

Сплавы группы IV применяют для всех способов литья. По ли­тейным свойствам они менее технологичны, чем сплавы II.

Сплавы группы V применяют для самых разнообразных дета­лей, работающих при высоких температурах. К этой группе относятся также самозакаливающиеся сплавы.

Механические свойства

Механические свойства всех вышеуказанных, литейных спла­вов зависят от режимов термической обработки, определяющей структурное и фазовое состояние сплавов.

Высокая коррозионная стойкость алюминия объясняется обра­зованием окисиой пленки Аl203. Коррозионная стойкость алю­миния зависит от влияния агрессивной среды на растворимость защитной окисной пленки, от чистоты обработки поверхности и режима термической обработки. Чистый алюминий обладает высокой стойкостью в сухом и влажном воздухе. В азотной кислоте концентрации 30—50% при увеличении температуры скорость коррозии алюминия возрастает. При концентрации азотной кис­лоты выше 80% коррозия резко снижается. Алюминий обладает высокой стойкостью в разбавленной серной кислоте и в концен­трированной при 20° С. Средние концентрации серной кислоты (более 40%) наиболее опасны для алюминия. При комнатных тем­пературах алюминий устойчив в фосфорной и уксусных кислотах. Такие, как муравьиная, щавелевая, трихлоруксусная и другие хлороорганические кислоты значительно разрушают алюминий. В растворах едких щелочей окисная пленка алюминия раство­ряется. Растворы углекислых солей калия и натрия оказывают меньшее влияние на скорость коррозии алюминия.

Алюминий при температурах до 300° С обладает хорошей стойкостью в жидких металлических средах, например, натрии.

Коррозионная стойкость алюминия в воде и водяном паре при повышенных температурах (выше 200° С) зависит от чистоты алюминия. Если происходит движение среды, то скорость корро­зии повышается в 10—60 раз.

Основными видами коррозии алюминиевых сплавов является межкристаллитная коррозия и коррозия под напряжением. Для повышения коррозионных свойств применяют защитные покрытия, такие, как плакирование, оксидные пленки, лакокрасочные по­крытия, смазки, хромовые или никель-хромовые гальванические покрытия.

Технология производства

Технология производства и термическая обработка могут оказывать существенное влияние на коррозионные свойства спла­вов. Сплавы АД, АД1, АМц, АМг2 и АМгЗ мало чувствительны к методам производства. Коррозионная стойкость сплавов АМг5, АМгб во многом зависит от методов производства. У этих сплавов при длительном нагреве на 60—70° С проявляется склонность к межкристаллитной коррозии и коррозии под напряжением.

Сплавы Д1, Д18, Д16 и типа В95 имеют пониженную корро­зионную стойкость. Подобные сплавы применяют с соответствую­щей защитой от коррозии. Сплавы типа авиаль обладают высокой коррозионной стойкостью в воде высокой чистоты с до­бавлением углекислого газа при температурах до 100° С.

При изучении влияния облучения на некоторые характеристики алюминия установлено, что после облучения интегральным пото­ком 1,1 х 1019 нейтрон/см2 при 80° С критическое напряжение сдвига увеличивается в 5 раз. При этом электросопротив­ление алюминия повышается на 30%. Влияние облучения на электрическое и критическое сопротивления сдвигу снимается при температуре около 60° С.

Из разработанных свариваемых, термически обрабатываемых, самозакаливающихся при сварке сплавов, наиболее характерны сплавы системы Аl—Zn—Mg. Однако, обладая удовлетвори­тельными прочностными свойствами, они склонны к коррозии под напряжением и замедленному разрушению. Такая склонность вызвана переходом от зонной к фазовой стадии старения даже при комнатных температурах эксплуатации сварных соединений. Поэтому сплавы системы Аl—Zn-Mg можно применять в усло­виях низких температур, исключающих переход к фазовому ста­рению при низком уровне сварочных напряжений. Содержание цинка и магния должно быть при этом минимальным.

Высокая стойкость 

К самозакаливающимся сплавам относится сплав 01911, по химическому составу он является среднелегированным сплавом системы Аl—Zn-Mg. Высокая стойкость против коррозии под напряжением обеспечивается суммарным содержанием цинка и магния до 6,5% и дополнительным введением марганца, хрома, меди и циркония. Причем медь ухудшает свариваемость сплава, поэтому для его сварки применяют проволоку марки 01557, аналогичную по химическому составу сплаву АМг5, но с добавкой циркония й хрома. Сплавы Д20 и АК8 достаточно прочны, но имеют низкую общую коррозионную стойкость. Они обладают высокой стойкостью против коррозии под напряжением и замедленного разрушения.

Перспективными являются спеченные сплавы. К числу жаро­стойких относятся сплавы типа САП, которые можно применять для конструкций, работающих при температурах до 400—500° С. САП содержит до 13% тугоплавкой окисной фазы, поэтому тем­пература плавления его очень высокая (2000° С).

Из сплавов САП-1 (6,0—9,0% А1203) и САП-2 (9,1 — 13,0% А1203) изготовляют такие же полуфабрикаты, как из алю­миниевых сплавов. Сплав САП-3 применяют только для прессо­ванных полуфабрикатов. Наибольшая масса прессованных полу­фабрикатов до 400 кг. Размеры изготовляемых листов 1000 X Х7000 мм при толщине от 0,8 до 10 мм.

Сплавы имеют высокие прочностные свойства. Так у сплава САП-1 при 20° С ов = 35 кГ/мм2, а у САП-3  40 кГ/мм2. Подобными свойствами обладает сплав САС-1 (25—30% Si и 7% Nі), получаемый из распыленного порошка. Он износостоек, достаточно прочен (<та = 25,0-28,0 кГ/мм2), имеет коэффициент линейного расширения, близкий к стали, и высокий модуль упру­гости.

Сплавы САС-1 и САП не склонны к коррозии под напряжением и замедленным разрушениям. Сплав САП можно применять при сравнительно высоких температурах эксплуатации. При сварке этих сплавов обычно применяют присадочную проволоку марки АМг6.

Также по теме:

svarder.ru

Температура плавления алюминия

Алюминий – легкий металл белого цвета с серебристым оттенком, мягкий (можно согнуть руками), хорошо обрабатывается, в то же время достаточно прочный. Является отличным проводником тепла и электричества. В чистом виде алюминий почти не используется, применение его практикуется в виде сплавов с медью, углеродом, оловом, титаном, марганцем и цинком. По электро- и теплопроводности алюминий уступает только серебру и меди. В то же время примеси ванадия, хрома и марганца снижают эти показатели.

Алюминий активно реагирует с кислотами и щелочами, образуя хлориды, сульфаты, алюминаты и прочие соединения. На воздухе металл моментально покрывается оксидной пленкой, которая защищает его от последующего окисления. Температура плавления алюминия находится в пределах 660,1 градусов, металл в расплавленном виде обладает хорошей жидкотекучестью. Для этого металла характерны высокая пластичность, морозостойкость, коррозионная стойкость при взаимодействии с дистиллированной и пресной водой.

Специалисты отмечают, что коррозионная стойкость зависит от чистоты алюминия - чем выше она, тем больше стойкость. Причиной коррозии могут стать поверхностные нарушения окисной пленки. Доказано, что температура плавления алюминия повышается по мере роста его чистоты. Обладая прекрасными литейными качествами, металл при кристаллизации дает большую усадку, этот показатель важен при изготовлении ответственного литья из этого металла.

Температура плавления алюминия может колебаться в зависимости от применяемого в качестве примеси материала. Лидерами производства алюминия в настоящее время в мире являются Россия, США, Канада, Австралия. Диапазон использования алюминия достаточно большой, наши предки алюминий в виде соединений (квасцы) применяли как вяжущее средство в медицине, для дубления кож, для продления срока хранения красок.

Достаточно низкая температура плавления алюминия позволяла расплавлять его в примитивных условиях.

В природе встречается оксид алюминия (корунд), он применяется как абразивный материал, а разновидности его - сапфир и рубин - относятся к категории драгоценных камней. Так как в чистом виде алюминий малопригоден для технического применения, чаще всего его применяют как сырье для изготовления различных сплавов. Спектр алюминиевых сплавов довольно обширный, он постоянно пополняется (с применением разных технологий).

В настоящее время из таких сплавов изготавливают пищевые баллоны, бидоны, кухонную посуду и различные предметы домашнего быта. Важными потребителями алюминиевых сплавов являются автомобильная, электротехническая, приборостроительная, химическая, оборонная, металлургическая промышленности. При какой температуре плавится алюминий, учитывается при изготовлении комплектующих частей для оборонной, космической и ядерной промышленностей.

Одним из самых распространенных цветных сплавов является дюралюминий, разработан он в прошлом веке немецким инженером А. Вильмом. Температура плавления дюралюминия составила примерно 650 градусов. Сущность его изобретения заключается в том, что сплав на основе алюминия после термической обработки приобретает большую прочность и твердость. Этим незамедлительно воспользовались специалисты и его пустили на нужды воздухоплавания. Новый сплав стал одним из главных конструкционных материалов в авиастроении.

В настоящее время под понятием дюралюминий подразумевается большой выбор алюминиевых сплавов, отличающихся высокой прочностью. Современные сплавы кроме меди содержат марганец, кремний, магний и т.д., по прочности они приблизились к низкоуглеродистой стали. Сегодня эти сплавы имеют широкое применение в авиационной промышленности, при изготовлении скоростных поездов и в ряде других случаев.

fb.ru

Температура кипения и плавления металлов, температура плавления стали

Температура кипения и плавления металлов

В таблице представлена температура плавления металлов tпл, их температура кипения tк при атмосферном давлении, плотность металлов ρ при 25°С и теплопроводность λ при 27°С.

Температура плавления металлов, а также их плотность и теплопроводность приведены в таблице для следующих металлов: актиний Ac, серебро Ag, алюминий Al, золото Au, барий Ba, берилий Be, висмут Bi, кальций Ca, кадмий Cd, кобальт Co, хром Cr, цезий Cs, медь Cu, железо Fe, галлий Ga, гафний Hf, ртуть Hg, индий In, иридий Ir, калий K, литий Li, магний Mg, марганец Mn, молибден Mo, натрий Na, ниобий Nb, никель Ni, нептуний Np, осмий Os, протактиний Pa, свинец Pb, палладий Pd, полоний Po, платина Pt, плутоний Pu, радий Ra, рубидий Pb, рений Re, родий Rh, рутений Ru, сурьма Sb, олово Sn, стронций Sr, тантал Ta, технеций Tc, торий Th, титан Ti, таллий Tl, уран U, ванадий V, вольфрам W, цинк Zn, цирконий Zr.

По данным таблицы видно, что температура плавления металлов изменяется в широком диапазоне (от -38,83°С у ртути до 3422°С у вольфрама). Низкой положительной температурой плавления обладают такие металлы, как литий (18,05°С), цезий (28,44°С), рубидий (39,3°С) и другие щелочные металлы.

Наиболее тугоплавкими являются следующие металлы: гафний, иридий, молибден, ниобий, осмий, рений, рутений, тантал, технеций, вольфрам. Температура плавления этих металлов выше 2000°С.

Приведем примеры температуры плавления металлов, широко применяемых в промышленности и в быту:

  • температура плавления алюминия 660,32 °С;
  • температура плавления меди 1084,62 °С;
  • температура плавления свинца 327,46 °С;
  • температура плавления золота 1064,18 °С;
  • температура плавления олова 231,93 °С;
  • температура плавления серебра 961,78 °С;
  • температура плавления ртути -38,83°С.

Максимальной температурой кипения из металлов, представленных в таблице, обладает рений Re — она составляет 5596°С. Также высокими температурами кипения обладают металлы, относящиеся к группе с высокой температурой плавления.

Плотность металлов в таблице находится в диапазоне от 0,534 до 22,59 г/см3, то есть самым легким металлом является литий, а самым тяжелым металлом осмий. Следует отметить, что осмий имеет плотность большую, чем плотность урана и даже плутония при комнатной температуре.

Теплопроводность металлов в таблице изменяется от 6,3 до 427 Вт/(м·град), таким образом хуже всего проводит тепло такой металл, как нептуний, а лучшим теплопроводящим металлом является серебро.

Температура плавления стали

Представлена таблица значений температуры плавления стали распространенных марок. Рассмотрены стали для отливок, конструкционные, жаропрочные, углеродистые и другие классы сталей.

Температура плавления стали находится в диапазоне от 1350 до 1535°С. Стали в таблице расположены в порядке возрастания их температуры плавления.

Температура плавления стали — таблица Сталь tпл, °С Сталь tпл, °С
Стали для отливок Х28Л и Х34Л 1350 Коррозионно-стойкая жаропрочная 12Х18Н9Т 1425
Сталь конструкционная 12Х18Н10Т 1400 Жаропрочная высоколегированная 20Х23Н13 1440
Жаропрочная высоколегированная 20Х20Н14С2 1400 Жаропрочная высоколегированная 40Х10С2М 1480
Жаропрочная высоколегированная 20Х25Н20С2 1400 Сталь коррозионно-стойкая Х25С3Н (ЭИ261) 1480
Сталь конструкционная 12Х18Н10 1410 Жаропрочная высоколегированная 40Х9С2 (ЭСХ8) 1480
Коррозионно-стойкая жаропрочная 12Х18Н9 1410 Коррозионно-стойкие обыкновенные 95Х18…15Х28 1500
Сталь жаропрочная Х20Н35 1410 Коррозионно-стойкая жаропрочная 15Х25Т (ЭИ439) 1500
Жаропрочная высоколегированная 20Х23Н18 (ЭИ417) 1415 Углеродистые стали 1535

Источники:

  1. Волков А.И., Жарский И.М. Большой химический справочник. — М: Советская школа, 2005. — 608 с.
  2. Промышленные печи. Справочное руководство для расчетов и проектирования. 2–е издание, дополненное и переработанное, Казанцев Е.И. М., «Металлургия», 1975.- 368 с.
  3. Физические величины. Справочник. А.П. Бабичев, Н.А. Бабушкина, А.М. Братковский и др.; Под ред. И.С. Григорьева, Е.З. Мейлихова. — М.:Энергоатомиздат, 1991. — 1232 с.

thermalinfo.ru

Алюминий и его свойства

Алюминий - химический элемент третей группы периодической системы Д.И. Менделеева.

Марки и химический состав (%) первичного алюминия (ГОСТ 11069–74)

*Для суммы титана, ванадия, хрома и марганца.

** Допускается массовая доля железа не менее 0,18 %.

***«Е» — в марках с гарантированными электрическими характеристиками.

Алюминий технической чистоты, применяемый для изготовления полуфабрикатов и изделий путем деформации, входит в ГОСТ 4784-74

Химический состав (%) технического алюминия

* B: 0,02 %; Ti + V: 0,02 %

**B: 0,05 %; Ti + V: 0,02 %

Гарантируемые механические характеристики (не менее) листов из АД0, АД1

АЛЮМИНИЙ, химический элемент III группы периодической системы, атомный номер 13, относительная атомная масса 26,98. В природе представлен лишь одним стабильным нуклидом 27 Al. Искусственно получен ряд радиоактивных изотопов алюминия, наиболее долгоживущий – 26 Al имеет период полураспада 720 тысяч лет.

Алюминий в природе. В земной коре алюминия очень много: 8,6% по массе. Он занимает первое место среди всех металлов и третье среди других элементов (после кислорода и кремния). Алюминия вдвое больше, чем железа, и в 350 раз больше, чем меди, цинка, хрома, олова и свинца вместе взятых! Как писал более 100 лет назад в своем классическом учебнике Основы химии Д.И. Менделеев, из всех металлов «алюминий есть самый распространенный в природе; достаточно указать на то, что он входит в состав глины, чтоб ясно было всеобщее распространение алюминия в коре земной. Алюминий, или металл квасцов (alumen), потому и называется иначе глинием, что находится в глине».

Важнейший минерал алюминия – боксит, смесь основного оксида AlO(OH) и гидроксида Al(OH)3 . Крупнейшие месторождения боксита находятся в Австралии, Бразилии, Гвинее и на Ямайке; промышленная добыча ведется и в других странах. Богаты алюминием также алунит (квасцовый камень) (Na,K)2 SO4 ·Al2 (SO4 )3 ·4Al(OH)3 , нефелин (Na,K)2 O·Al2 O3 ·2SiO2 . Всего же известно более 250 минералов, в состав которых входит алюминий; большинство из них – алюмосиликаты, из которых и образована в основном земная кора. При их выветривании образуется глина, основу которой составляет минерал каолинит Al2 O3 ·2SiO2 ·2h3 O. Примеси железа обычно окрашивают глину в бурый цвет, но встречаются и белая глина – каолин, которую применяют для изготовления фарфоровых и фаянсовых изделий.

Изредка встречается исключительно твердый (уступает лишь алмазу) минерал корунд – кристаллический оксид Al2 O3 , часто окрашенный примесями в разные цвета. Его синяя разновидность (примесь титана и железа) называется сапфиром, красная (примесь хрома) – рубином. Разные примеси могут окрашивать так называемый благородный корунд также в зеленый, желтый, оранжевый, фиолетовый и другие цвета и оттенки.

Еще недавно считалось, что алюминий как весьма активный металл не может встречаться в природе в свободном состоянии, однако в 1978 в породах Сибирской платформы был обнаружен самородный алюминий – в виде нитевидных кристаллов длиной всего 0,5 мм (при толщине нитей несколько микрометров). В лунном грунте, доставленном на Землю из районов морей Кризисов и Изобилия, также удалось обнаружить самородный алюминий. Предполагают, что металлический алюминий может образоваться конденсацией из газа. Известно, что при нагревании галогенидов алюминия – хлорида, бромида, фторида они могут с большей или меньшей легкостью испаряться (так, AlCl3 возгоняется уже при 180° C). При сильном повышении температуры галогениды алюминия разлагаются, переходя в состояние с низшей валентностью металла, например, AlCl. Когда при понижении температуры и отсутствии кислорода такое соединение конденсируется, в твердой фазе происходит реакция диспропорционирования: часть атомов алюминия окисляется и переходит в привычное трехвалентное состояние, а часть – восстанавливается. Восстановиться же одновалентный алюминий может только до металла: 3AlCl  2Al + AlCl3 . В пользу этого предположения говорит и нитевидная форма кристаллов самородного алюминия. Обычно кристаллы такого строения образуются вследствие быстрого роста из газовой фазы. Вероятно, микроскопические самородки алюминия в лунном грунте образовались аналогичным способом.

Название алюминия происходит от латинского alumen (род. падеж aluminis). Так называли квасцы, двойной сульфат калия-алюминия KAl(SO4 )2 ·12h3 O), которые использовали как протраву при крашении тканей. Латинское название, вероятно, восходит к греческому «халмэ» – рассол, соляной раствор. Любопытно, что в Англии алюминий – это aluminium, а в США – aluminum.

Во многих популярных книгах по химии приводится легенда о том, что некий изобретатель, имя которого история не сохранила, принес императору Тиберию, правившему Римом в 14–27 н.э., чашу из металла, напоминающего цветом серебро, но более легкого. Этот подарок стоил жизни мастеру: Тиберий приказал казнить его, а мастерскую уничтожить, поскольку боялся, что новый металл может обесценить серебро в императорской сокровищнице.

Эта легенда основана на рассказе Плиния Старшего, римского писателя и ученого, автора Естественной истории – энциклопедии естественнонаучных знаний античных времен. Согласно Плинию, новый металл был получен из «глинистой земли». А ведь глина действительно содержит алюминий.

Современные авторы почти всегда делают оговорку, что вся эта история – не более чем красивая сказка. И это не удивительно: алюминий в горных породах чрезвычайно прочно связан с кислородом, и для его выделения необходимо затратить очень много энергии. Однако в последнее время появились новые данные о принципиальной возможности получения металлического алюминия в древности. Как показал спектральный анализ, украшения на гробнице китайского полководца Чжоу-Чжу, умершего в начале III в. н.э., сделаны из сплава, на 85% состоящего из алюминия. Могли ли древние получить свободный алюминий? Все известные способы (электролиз, восстановление металлическим натрием или калием) отпадают автоматически. Могли ли в древности найти самородный алюминий, как, например, самородки золота, серебра, меди? Это тоже исключено: самородный алюминий – редчайший минерал, который встречается в ничтожных количествах, так что древние мастера никак не могли найти и собрать в нужном количестве такие самородки.

Однако возможно и другое объяснение рассказа Плиния. Алюминий можно восстановить из руд не только с помощью электричества и щелочных металлов. Существует доступный и широко используемый с древних времен восстановитель – это уголь, с помощью которого оксиды многих металлов при нагревании восстанавливаются до свободных металлов. В конце 1970-х немецкие химики решили проверить, могли ли в древности получить алюминий восстановлением углем. Они нагрели в глиняном тигле до красного каления смесь глины с угольным порошком и поваренной солью или поташом (карбонатом калия). Соль была получена из морской воды, а поташ – из золы растений, чтобы использовать только те вещества и методы, которые были доступны в древности. Через некоторое время на поверхности тигля всплыл шлак с шариками алюминия! Выход металла был мал, но не исключено, что именно этим путем древние металлурги могли получить «металл 20 века».

mirznanii.com

Физические свойства алюминия | Всё о красках

Алюминий принадлежит основной группе III периодической системы, его атомное число 13, а атомный вес 26.9815. Алюминий характеризуется гранецентрированной кубической структурой кристалла. Основные физические свойства очищенного алюминия показаны в таблице.

Физические свойства алюминия

(Если иное не указано отдельно, все данные приведены для очищенного алюминия (чистота 99.99%) при температуре 20°C)

Химический символ Al  
Атомное число 13  
Относительная атомная масса (атомный вес) 26.98154  
Атомный объем 9.996 106 м3/моль
Конфигурация электрона (квантовое состояние) Модель БораK shell 2eL shell 8eM shell 3e Основная модель1s22s22p63s23p1
Кристаллическая решетка fсс Структура типа A1
Плотность упаковки 74%  
Координационное число 12  
Постоянная кристаллической решетки 0.40496 нм
Энергия дефекта упаковки 200 107 Дж/см2
Минимальное межатомное расстояние 0.28635 нм
Плотность 2.6989 г/cm3 или кг/дм3
Изменение объема при переходе из жидкого состояния в твердое (усадка) 6.5 %
Линейная усадка при литье при температуре от 660°C (933 K) до 20°C (293 K) 1.85 %
Средний линейный коэффициент расширения при температуре от 20°C (293K) до 100°C (373K) 236 106 1/K
модуль Юнга 66.6 ГПа или кН/мм2
модуль сдвига 25.0 ГПа или кН/мм2
коэффициент Пуассона 0.35  
Сжимаемость 13.3 мм2/MN
Точка плавления 660.2 °C
Латентная теплота плавления 390 кДж/кг
Точка кипения -2500 °C
Латентная теплота испарения 11 4 МДж/кг
Давление пара при 660°C (933 K) при 1200°C (1473 K) - 108-109~102 мБармБар
Удельная теплота при постоянном давлении 0.89 кДж/кг K
Постоянная температуры (дебаевская температура) 440 K
Энергия активации самодиффузии 120 кДж/моль
Электропроводность 37.67= 64.95% м/W мм2% IACS
Электрическое удельное сопротивление 26.55 нW м
Температурный коэффициент электрического удельного сопротивления + 0.115 нW м/K
температура (фазового) перехода суперпроводимости 1.2 K
теплопроводность 235 Ватт/м K
Число Лоренца 2.1 108 (Ватт W)/K2
Удельная магнитная восприимчивость (определенная рационально) 7.7 109 м3/кг
Термоэлектрическая сила по отношению к платине 4 Дж В/K
Постоянная Холла -35   1012 м3/C
Поверхностное натяжение при температуре 660°C (933K) 0.86 Н/м
Динамическая вязкость при температуре 700°C (973K) 1.1 мН с/м2
Теплота сгорания 31 МДж/кг
Стандартный потенциал электрода -1.67 В
Стандартный потенциал электрода в NaCI-h302 по отношению к электроду из каломели 0,1N 0.87 В
Электрохимический эквивалент AI3+ 9.32 105 г/С
Сечение захвата медленных нейтронов (2200м/сек) 0.20 1024 см2/атом

Большинство данных свойств являются постоянными (например, атомный вес). Некоторые свойства зависят от внешних условий, например температуры (плотность и удельная теплота), многие свойства зависят от легирующих добавок и структурных изменений (например, теплопроводность). Рассмотрим более подробно те свойства, для которых такая зависимость имеет решающее значение.

Алюминий играет важную роль во многих отраслях промышленности именно благодаря его физическим свойствам. Одним из важнейших свойств является низкий уровень плотности, который делает алюминий наиболее подходящим материалом, который является экономичным и экологически чистым. Плотность серийно выпускаемых материалов на базе алюминия составляет от 2.6 до 2.8г/см3 (2.7г/см3 – беспримесный алюминий), это всего лишь третья часть плотности стали. Алюминий при этом еще более выигрывает по сравнению с тяжелыми металлами. Алюминий принадлежит к так называемым легким металлам, максимальная плотность которых составляет 4.5г/см3. К легким металлам относятся также магний (1,7г/см3), бериллий (1.85г/см3) и титан (4.5г/см3).

Низкая плотность позволяет значительно сократить вес оборудования для грузоперевозок, например, транспортных средств для наземных, морских и воздушных перевозок, контейнеров, которые постоянно используются для организации перевозок. В механическом машиностроении уменьшение веса приводит к значительному сокращению потребления энергии, а также затрат на организацию производства и технического обслуживания. Даже в стационарном оборудовании сокращение веса позволяет уменьшить требования к фундаменту и несущим структурам.

Плотность зависит от температуры, уменьшаясь при повышении температуры благодаря термическом расширению. При затвердении имеет место явление усадки в размере 6.5%, которое также вызывает повышение плотности от 2.37г/см3 в жидком состоянии при температуре 660°C до 2.55г/см3 в твердом состоянии при той же температуре. Усадка приводит к образованию пустот при затвердении алюминиевых литейных форм.

 Коэффициент термического расширения очищенного алюминия (AI99.99) для различных диапазонов температур

Температурный диапазон, °C Средний линейный коэффициент термического расширения 106 1/K
200- 20 180
150-20 199
100-20 210
50-20 218
20-100 236
20-200 245
20-300 255
20-400 264
20-500 274
20   - 600 285

vseokraskah.net

Хлористый алюминий температура кипения - Справочник химика 21

    В свою очередь метилбензол при нагреве его до температуры кипения и выше с хлористым алюминием превращается в бензол и метил замещен ные бензолы. [c.149]

    В круглодонную трехгорлую колбу емкостью 1,5 л, снабженную мешалкой с ртутным затвором и обратным холодильником, помещают 90 г (0,7 моля) мелко измельченного безводного хлористого алюминия, 275 г (2 моля) треххлористого фосфора и 355 мл бензола, не содержащего тиофена (примечание 1). Смесь перемешивают и нагревают на воздушной бане, поддерживая слабое кипение раствора. После нескольких минут нагревания начинается выделение хлористого водорода и наблюдается образование нижнего (все время увеличивающегося) слоя, окрашенного в более темный цвет. По истечении 1,5 часа выделение хлористого водорода замедляется, а температура жидкости, которая в начале реакции была 75°, возрастает до 81° и жидкость становится однородной. Нагревание продолжают 2,5 часа. [c.312]

    Вытяжки сушат в течение часа 30 г хлористого кальция, фильтруют и растворитель отгоняют па водяной бане. Затем остаток отгоняют в вакууме с коротким дефлегматором (стр. 142). Сперва отгоняется низкокипящая фракция, после чего температура быстро повышается. Если соли алюминия были тщательно отмыты водой (примечание 6), то получается бесцветная жидкость, застывающая в твердую кристаллическую массу с т. пл. 49—50,5°. Выход продукта, кипящего в пределах трех градусов, составляет 340—395 г (69— 79% теоретич. примечания 7 и 8). Температуры кипения после вторичной перегонки 117°/7 мм, 129—130°/15 мм и 255,5°/73б мм. [c.105]

    Расщепление анабазина проводилось в присутствии хлористого алюминия без растворителя при температуре кипения анабазина. Из поставленных более 10 опытов выяснилось оптимальное количественное соотношение хлористого алюминия и исходных продуктов. Кроме того, было показано, что если идет расщепление анабазина, то всегда образуется пиридин. Других продуктов ни в одном случае нами не обнаружено. [c.45]

    Можно применять продажный хлористый фенацил при отсутствии этого препарата его получают с выходом 85—88% теоретического количества по реакции Фриделя—Крафтса, исходя из 234 г (265 мл, 3 моля) абсолютного бензола и 79,5 г (53 ма, 0,70 моля) хлорангидрида хлоруксусной кислоты, в присутствии 103 g (0,77 моля) порошкообразного безводного хлористого алюминия температура кипения полученного хлористого фенацила 122—125° (4 мм)-, т. пл. 56—57°. Хлористый фенацил является сильным лакриматором и отравляющия веществом нарывного действия. При обращении с ним необходимо соблюдать осторожность. [c.470]

    Перхлорилбензол gHj lOs был получен обработкой бензола перхлорилфторидом в присутствии хлористого алюминия. Температура кипения этого соединения 232°С, температура замерзания составляет —3 °С. Плотность при 30 равна 1,185 г1см  [c.75]

    Для промышленного этилировапия бензола этиленом последний должен быть чистым. Он не должен содержать гомологов этилена, как пропен или бутен, потому что образование даже небольших количеств изопропилбен-зола может сильно мешать разделению бензола, моноэтилбензола и поли-этилбензола из-за налегания друг на друга температур кипения компонентов смеси. Этилен должен быть практически свободен также от кислорода и окиси углерода, так как эти газы увеличивают расход безводного хлористого алюминия. [c.228]

    В соответствии с часто высказывавшимся взглядом, что хорошими смазочными свойствами обладают только углеводороды, в молекуле которых имеются циклы, исследовались возможности получения смазочных масел конденсацией высших хлористых алкилов с ароматическими углеводородами. Исходным сырьем для этого применяли газойль с (пределами кипения приблизительно 230—320" , получаемый при синтезе углеводородов по Фишеру — Тропшу, известный под названием когазин П. Этот исходный материал хлорировали и затем подвергали его взаимодействию с ароматическими углеводородами по Фриделю — Крафтсу в присутствии безводного хлористого алюминия. Таким спосо-болМ удавалось получать смазочные масла любой требуемой вязкости, отличавшиеся хорошими низкотемпературными свойствами, стойкостью к окислению и низкой коксуемостью. Однако важнейшая характеристика смазочных масел — их вязкостно-температурная зависимость, выражаемая высотой полюса вязкости или индексом вязкости, для таких масел оказывалась неудовлетворительной. Вязкость этих масел сравнительно круто падает с повышением температуры. Высота полюса вязкости таких масел лежит около 3 индекс вязкости соответственно равен около 30. [c.235]

    Дёйствуя хлористым алюминием на кипящий гептан (температура кипения 98,4°) и непрерывно удаляя в ректификационной колонне образующиеся низкомолекулярные углеводороды, получают всего 5% изомерных гептанов, тогда как 95% исходного гептана переходит в ниже-или вышекипящие продукты (табл. 137) [25]. [c.521]

    Каталитическая макрополимеризация изобутилена. Полимеризация изобутилена при температурах ниже —70° С в присутствии катализаторов Фриделя-Крафтса, таких как хлористый алюминий, фтористый бор и четыреххлористый титан, приводит к образованию высокомолекулярных полимеров, обладающих эластическими свойствами [63]. Внесение, например, фтористого бора в жидкий изобутилен при —80° С вызывает мгновенную, почти взрывную реакцию в противоположность этому полимеризация при температуре кипения изобутилена (—6° С) требует индукционного периода и продуктом такой полимеризации являются лшдкие масла. Увеличение температуры от —90 до —10° С вызывает уменьшение молекулярного веса полимера от 200 ООО до 10 ООО. [c.227]

    И могут быть использованы в непрерывных процессах, йаилучшие результаты получены при применении жидких комплексов хлористого алюминия, которые вследствие нерастворимости в продукте алкилирования быстро отстаиваются. Это позволяет отделять их и снова вводить в процесс. Комплексы можно получать на месте (in situ) при помощи реакции алкилирования [2, 47] или же приготовлять предварительно путем взаимодействия хлористого алюминия с различными алифатическими углеводородами и углеводородными фракциями (например, с олефинами, с 2,2,4-триметил-пентаном, с керосином) [19]. Хорошие результаты давало использование в качестве катализатора жидкого комплекса, приготовленного взаимодействием хлористого алюминия с остатком от перегонки продукта (температура кипения около 160—200° 98,4% парафиновых и 1,6% олефиновых углеводородов), получаемого при алкилировании изобутана пропиленом и бутиленами в присутствии серной кислоты. [c.321]

    Гексан и гептан. Обработкой и-гексана и и-гептапа в присутствии хлористого алюминия нри температурах кипения получают ширококипящие смеси, содержащие большие количества продуктов каждого, чем это возможно при простой изомеризации [433]. От изомеров гексана, 2- и 3-метилпентанов, которые взаимообратимы, образуется первый, а затем 2,4-диметилбутан последний медленно изомеризуется в 2,2-диметилбутан [434]. Слон ные продукты, содержащие 65% пентанов и более легких парафинов, 6% изогексанов, 5% изогептанов и 24% высококипящих углеводородов, получают при изомеризации н-гептана [435]. [c.118]

    Аскантщетно пытавшийся полимеризовать этилен в присутствии хлористого алюминия, предпринял такие же опыты над амиленом этот последний при обработке на хол оду равным по весу количеством хлористого алюминия даёт нафтеновые углеводороды с высокой температурой кипения, с меньпгим содержанием водорода, чем у полнметиленовых углеводородов, и по свойствам аналогичные смазочным маслам. Содержанке парафиновых углеводородов возрастает вместе с температурой. [c.324]

    Образование этого последнего углеводорода может быть объяснено только присоединением, под влиянием катализатора, к углеродной цепи амилена СН . Эти результаты вполне подтвердились работами Энглера и Рутала , которые полимеризо али амилен в присутствии хлористого алюминия как на холоду, так и при умеренном нагревании (температура кипения амилена). Водород, необходимый для образования парафин эвых углеводародов, вероятно выделяется из углеводородов, составляющих смазочное масло, и возможно, что нафтены образуются дсак прямо из олефинов, так и из промежуточных полиолефинов. [c.325]

    Было предложено вместо хлористого алюминия пользоваться хло-редом с более высокой температурой кипения, получаемым при пропускании хлора через нагретую смесь алюминия, угля и хлористого натрия . [c.329]

    В промышленности приняты следующие процессы жидкофазный процесс синтеза этилбензола на катализаторе AI I3. Процесс ведут в стальных колоннах, облицованных специальными антикоррозионными материалами, реакция идет при температуре кипения реакционной смеси (80—100°С) и атмосферном давлении. В качестве сырья используется бензол со степенью чистоты пе -ниже 99%. Твердый хлорид алюминия прибавляется к реакционной смеси и -в реакторе образуется соответствующее комплексное соединение. Бе-нзол-сырье и бензол-рециркулят после предварительной осушки подаются в реактор. Хлористый водород или хлористый этилен также добавляются в реактор. Жидкие продукты из алкилатора охлаждаются и направляются в отстойник, где -каталитический комплекс отделяется и возвращается в алкилатор. Алкилат промывается водой, затем 20%-пой водной щелочью для нейтрализации НС1, после чего разделяется на -индивидуальные компоненты на стадии ректификации. [c.266]

    Полимеризация смеси изобутилена и изопрена в жидком этане при температуре кипения этана катализируется небольшим количеством хлористого алюминия, растворенным в 2 5 или в ВГ . Реакция протекает очень быстро, подобно ионньп г реакциям в неорганической химии. Экзотермический характер реакции заставляет уделять при технологическом оформлении процесса большое внимание методам отвода тепла и учитывать возможность недопустимого внезапного повышения температуры /65/. Одним из методов борьбы с такими перегревами является частичное выпаривание жидкого этана. [c.125]

    Нитробензол. — Нитробензол получают в технике с выходом до 98% путем нитрования бензола нитрующей смесью при 50—55°С. Это почти бесцветная жидкость, не смешивающаяся с водой и летучая с водяным паром ( ==1 97). Нитробензол обладает характерным сладковатым запахом, напоминающим запах горького миндаля. Он является хорошим растворителем для многих органических соединений, и его применяют для крррсталлизации веществ, нерастворимых в обычных растворителях, хотя он и 0 бладает теми недостатками, что с трудом удаляется из кристаллов из-за своей малой летучести (т. кип. 210 °С) и проявляет слабое окисляющее действие при температурах, близких к кипению. Нитробензол растворяет также хлористый алюминий, образуя с ним комплекс, и применяется в качестве растворителя в реакции Фриделя — Крафтса. [c.198]

    Во многих случаях зЗмыкание цикла может происходить при нагревании хлорангидрида даже в отсутствие катализатора. Однако при этом циклизация происходит медленно присутствие хлористого алюминия сильно ее ускоряет. Скорость циклизации хлорангидридов р- или а-арил-алифатических кислот так велика, что реакцию можно вести в среде бензола как растворителя. Условием хорошего выхода циклических кетонов является кратковременное нагревание реакционной смеси при умеренной температуре (температура кипения сероуглерода или бензола), благодаря чему предотвращается осмоление. [c.297]

    В Круглодонную трехгорлую колбу емкостью 2 л, снабженную мешалкой, обратным холодильником, термометромл капельной воронкой, помеш,ают 134 г (1 моль) измельченного безводного хлористого алюминия и 450 г (часть от общего количества 700 г— 4,5 моля) сухого четыреххлористого углерода (примечание 1). Форштосс обратного холодильника соединяют с трубкой, наполненной хлористым кальцием, а затем с прибором для поглощения хлористого водорода. Колбу охлаждают водой со льдом. Включают мешалку и после охлаждения смеси в колбе до температуры + 12° приливают 20 г (часть общего количества 156 г—2 моля) безводного, не содержащего тиофена бензола. С момента начала реакции выделяется хлористый водород и температура смеси возрастает колбу прй этом необходимо охлаждать льдом с солью (примечание 2). После того как температура, которая вначале сильно повышается, начнет понижаться, вводят по каплям остальное количество смеси бензола (136 г) и четыреххлористого углерода (250 г). Вначале бензол следует приливать очень медленно, чтобы, не прерывая начавшуюся реакцию, обеспечить тю возможности быстрое охлаждение реакционной смеси до температуры +10°. Затем скорость приливания следует увеличить, поддерживая, однако, температуру реакции в пределах от 5 до 10° (примечание 3). При хорошем охлаждении приливание бензола продолжается около 1 часа. Смесь перемешивают еще 2 часа, поддерживая температуру около +10°, мешалку выключают и смесь оставляют на ночь. Затем включают мешалку, охлаждают смесь до +5° и через капельную воронку приливают 100 мл воды с такой скоростью, чтобы поддерживалось легкое кипение четырех-.хлористого углерода. [c.306]

    Затем было изучено взаимодействие хинолина и изохи-нола с хлористым алюминием. Нагревание равномолекулярных количеств оснований при их температуре кипения с хлористым алюминием в течение 4—5 часов не привело к распаду. В каждом случае, после обработки продуктов реакции обычным способом, возвращались почти количественно неизмененные исходные вещества. [c.46]

    На рис. 16 приведена схема пилотной установки по синтезу алкилхлорсиланов парофазным методом. Алкилирование алкилхлорсиланов можно проводить в контактной металлической трубе 6, обогреваемой в электрической печи 5. В алкилатор 4 из мерника 3 подают необходимое количество алкилхлорсилана, а реакционную трубу 6 заполняют алюминием или цинком. Затем нагревают алкил-хлорсилан в аппарате 4 до температуры кипения и при этой температуре через испаритель 2 по барботеру начинают подавать хлористый алкил из емкости 1. Газообразный хлористый алкил увлекает пары алкилхлорсилана из алкилаюра в контактную трубу 6, где выдерживается температура 300—450 °С. Нужное соотношение хлористого алкила и алкилхлорсилана поддерживают, регулируя температуру в аппарате 4. [c.58]

    Фосет [608] получал 2,4-диметилпентан алкилированием изобУтана пропиленом в присутствии хлористого алюминия. Продукт реакции перегоняли, фильтровали через силикагель с целью удаления галоидсодержащих соединений, а затем подвергали фракционированной перегонке. Температура кипения полученного образца составляла 80,7°, 0,6738, 1,3821. [c.280]

    Полимеры простых виниловых эфиров. Процесс полимеризации простых виниловых афиров протекает при температуре, близкой к температуре кипения взятого эфира. В качестве катализатора используют раствор хлорного железа в бутиловом спирте. Могут применяться н катализаторы типа Фриделя-Крафтса хлористый алюминий, хлористый титан, фтористый бор и др. Реакция ироте- [c.285]

    В двухгорлую колбу емкостью 0,5 литра, снабженную капельно воронкой и эффективным обратным холодильником помещают 58,7 (0,31 моль) тетраэтилгермана, 0,7 г хлористого алюминия и немного хлористого трет.-бутила. Сразу начинается бурная реакция. После прекращения сильного кипения добавляют оставшийся трет.-бутилхлорид (всего 42 г, 0,46 моль). Заменяют капельную воронку Нс термометр с длинной ножкой (шарик термометра должен быть погружен в раствор) и кипятят реакционную смесь до тех пор пока температура смеси не перестанет расти. После перегонки получают 5 (90%) триэтилхлоргермана, т.кип. 95-1000С 50 мм рт ст. рт.ст, п- 1,4630. [c.12]

chem21.info


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта